Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Matrix Biol ; 112: 62-71, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35961423

RESUMO

In metazoans, cell adhesion to the extracellular matrix (ECM) drives the development, functioning, and repair of different tissues, organs, and systems. Disruption or dysregulation of cell-to-ECM adhesion promote the initiation and progression of several diseases, such as bleeding, immune disorders and cancer. Integrins are major ECM transmembrane receptors, whose function depends on both allosteric changes and exo-endocytic traffic, which carries them to and from the plasma membrane. In apico-basally polarized cells, asymmetric adhesion to the ECM is maintained by continuous targeting of the plasma membrane by vesicles coming from the trans Golgi network and carrying ECM proteins. Active integrin-bound ECM is indeed endocytosed and replaced by the exocytosis of fresh ECM. Such vesicular traffic is finely driven by the teamwork of microtubules (MTs) and their associated kinesin and dynein motors. Here, we review the main cytoskeletal actors involved in the control of the spatiotemporal distribution of active integrins and their ECM ligands, highlighting the key role of the synchronous (ant)agonistic cooperation between MT motors transporting vesicular cargoes, in the same or in opposite direction, in the regulation of traffic logistics, and the establishment of epithelial and endothelial cell polarity.


Assuntos
Dineínas , Cinesinas , Adesão Celular , Dineínas/metabolismo , Células Endoteliais/metabolismo , Matriz Extracelular/metabolismo , Integrinas/genética , Integrinas/metabolismo , Ligantes
2.
Nat Commun ; 13(1): 4188, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35858913

RESUMO

The formation of a functional blood vessel network relies on the ability of endothelial cells (ECs) to dynamically rearrange their adhesive contacts in response to blood flow and guidance cues, such as vascular endothelial growth factor-A (VEGF-A) and class 3 semaphorins (SEMA3s). Neuropilin 1 (NRP1) is essential for blood vessel development, independently of its ligands VEGF-A and SEMA3, through poorly understood mechanisms. Grounding on unbiased proteomic analysis, we report here that NRP1 acts as an endocytic chaperone primarily for adhesion receptors on the surface of unstimulated ECs. NRP1 localizes at adherens junctions (AJs) where, interacting with VE-cadherin, promotes its basal internalization-dependent turnover and favors vascular permeability initiated by histamine in both cultured ECs and mice. We identify a splice variant of tryptophanyl-tRNA synthetase (mini-WARS) as an unconventionally secreted extracellular inhibitory ligand of NRP1 that, by stabilizing it at the AJs, slows down both VE-cadherin turnover and histamine-elicited endothelial leakage. Thus, our work shows a role for NRP1 as a major regulator of AJs plasticity and reveals how mini-WARS acts as a physiological NRP1 inhibitory ligand in the control of VE-cadherin endocytic turnover and vascular permeability.


Assuntos
Neuropilina-1 , Triptofano-tRNA Ligase , Junções Aderentes/metabolismo , Animais , Antígenos CD , Caderinas/genética , Permeabilidade Capilar , Células Endoteliais/metabolismo , Histamina , Ligantes , Camundongos , Neuropilina-1/genética , Neuropilina-1/metabolismo , Proteômica , Triptofano-tRNA Ligase/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
3.
Life Sci Alliance ; 5(10)2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35636967

RESUMO

MET is an oncogene encoding the tyrosine kinase receptor for hepatocyte growth factor (HGF). Upon ligand binding, MET activates multiple signal transducers, including PI3K/AKT, STAT3, and MAPK. When mutated or amplified, MET becomes a "driver" for the onset and progression of cancer. The most frequent mutations in the MET gene affect the splicing sites of exon 14, leading to the deletion of the receptor's juxtamembrane domain (MET∆14). It is currently believed that, as in gene amplification, MET∆14 kinase is constitutively active. Our analysis of MET in carcinoma cell lines showed that MET∆14 strictly depends on HGF for kinase activation. Compared with wt MET, ∆14 is sensitive to lower HGF concentrations, with more sustained kinase response. Using three different models, we have demonstrated that MET∆14 activation leads to robust phosphorylation of AKT, leading to a distinctive transcriptomic signature. Functional studies revealed that ∆14 activation is predominantly responsible for enhanced protection from apoptosis and cellular migration. Thus, the unique HGF-dependent ∆14 oncogenic activity suggests consideration of HGF in the tumour microenvironment to select patients for clinical trials.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Proteínas Proto-Oncogênicas c-met , Humanos , Ligantes , Oncogenes , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo
4.
J Cell Biol ; 220(11)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34581723

RESUMO

Dynamic modulation of endothelial cell-to-cell and cell-to-extracellular matrix (ECM) adhesion is essential for blood vessel patterning and functioning. Yet the molecular mechanisms involved in this process have not been completely deciphered. We identify the adhesion G protein-coupled receptor (ADGR) Latrophilin 2 (LPHN2) as a novel determinant of endothelial cell (EC) adhesion and barrier function. In cultured ECs, endogenous LPHN2 localizes at ECM contacts, signals through cAMP/Rap1, and inhibits focal adhesion (FA) formation and nuclear localization of YAP/TAZ transcriptional regulators, while promoting tight junction (TJ) assembly. ECs also express an endogenous LPHN2 ligand, fibronectin leucine-rich transmembrane 2 (FLRT2), that prevents ECM-elicited EC behaviors in an LPHN2-dependent manner. Vascular ECs of lphn2a knock-out zebrafish embryos become abnormally stretched, display a hyperactive YAP/TAZ pathway, and lack proper intercellular TJs. Consistently, blood vessels are hyperpermeable, and intravascularly injected cancer cells extravasate more easily in lphn2a null animals. Thus, LPHN2 ligands, such as FLRT2, may be therapeutically exploited to interfere with cancer metastatic dissemination.


Assuntos
Permeabilidade Capilar/fisiologia , Adesão Celular/fisiologia , Endotélio Vascular/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Animais Geneticamente Modificados , Células COS , Linhagem Celular , Núcleo Celular/metabolismo , Chlorocebus aethiops , Matriz Extracelular/metabolismo , Células HEK293 , Humanos , Transdução de Sinais/fisiologia , Transativadores/metabolismo , Peixe-Zebra
5.
EMBO J ; 39(24): e103661, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33215754

RESUMO

Although subcellular positioning of endosomes significantly impacts on their functions, the molecular mechanisms governing the different steady-state distribution of early endosomes (EEs) and late endosomes (LEs)/lysosomes (LYs) in peripheral and perinuclear eukaryotic cell areas, respectively, are still unsolved. We unveil that such differences arise because, while LE retrograde transport depends on the dynein microtubule (MT) motor only, the one of EEs requires the cooperative antagonism of dynein and kinesin-14 KIFC1, a MT minus end-directed motor involved in cancer progression. Mechanistically, the Ser-x-Ile-Pro (SxIP) motif-mediated interaction of the endoplasmic reticulum transmembrane protein stromal interaction molecule 1 (STIM1) with the MT plus end-binding protein 1 (EB1) promotes its association with the p150Glued subunit of the dynein activator complex dynactin and the distinct location of EEs and LEs/LYs. The peripheral distribution of EEs requires their p150Glued-mediated simultaneous engagement with dynein and SxIP motif-containing KIFC1, via HOOK1 and HOOK3 adaptors, respectively. In sum, we provide evidence that distinct minus end-directed MT motor systems drive the differential transport and subcellular distribution of EEs and LEs in mammalian cells.


Assuntos
Transporte Biológico/fisiologia , Endossomos/metabolismo , Microtúbulos/metabolismo , Adesão Celular , Linhagem Celular , Citoesqueleto , Complexo Dinactina/metabolismo , Dineínas/metabolismo , Retículo Endoplasmático/metabolismo , Inativação Gênica , Humanos , Cinesinas/genética , Cinesinas/metabolismo , Lisossomos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Neoplasias , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo
6.
Sci Transl Med ; 10(442)2018 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-29794061

RESUMO

Vascular normalizing strategies, aimed at ameliorating blood vessel perfusion and lessening tissue hypoxia, are treatments that may improve the outcome of cancer patients. Secreted class 3 semaphorins (SEMA3), which are thought to directly bind neuropilin (NRP) co-receptors that, in turn, associate with and elicit plexin (PLXN) receptor signaling, are effective normalizing agents of the cancer vasculature. Yet, SEMA3A was also reported to trigger adverse side effects via NRP1. We rationally designed and generated a safe, parenterally deliverable, and NRP1-independent SEMA3A point mutant isoform that, unlike its wild-type counterpart, binds PLXNA4 with nanomolar affinity and has much greater biochemical and biological activities in cultured endothelial cells. In vivo, when parenterally administered in mouse models of pancreatic cancer, the NRP1-independent SEMA3A point mutant successfully normalized the vasculature, inhibited tumor growth, curbed metastatic dissemination, and effectively improved the supply and anticancer activity of chemotherapy. Mutant SEMA3A also inhibited retinal neovascularization in a mouse model of age-related macular degeneration. In summary, mutant SEMA3A is a vascular normalizing agent that can be exploited to treat cancer and, potentially, other diseases characterized by pathological angiogenesis.


Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , Proteínas Mutantes/metabolismo , Neuropilina-1/metabolismo , Semaforina-3A/agonistas , Animais , Antineoplásicos/uso terapêutico , Permeabilidade Capilar/efeitos dos fármacos , Moléculas de Adesão Celular/metabolismo , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neovascularização de Coroide/tratamento farmacológico , Neovascularização de Coroide/patologia , Simulação por Computador , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Camundongos Transgênicos , Proteínas Mutantes/química , Neoplasias/irrigação sanguínea , Neoplasias/patologia , Proteínas do Tecido Nervoso/metabolismo , Ligação Proteica/efeitos dos fármacos , Semaforina-3A/química
7.
Methods Mol Biol ; 1493: 195-207, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27787852

RESUMO

Semaphorins (SEMA) are chemorepulsive guidance cues that, acting through plexin receptors, inhibit integrin-mediated cell adhesion to the extracellular matrix. The ensuing cell retraction and collapse is a key biological event downstream of SEMA/plexin signaling that is however hard to precisely quantify. Here, we describe a quantitative approach that allows monitoring over time the evolution of SEMA3E/plexin D1-elicited endothelial cell collapse. This method exploits the xCELLigence platform, an electrical impedance-based system in which microelectronic sensor arrays are integrated into the bottom of microplate wells. Measuring electrical impedance allows real-time monitoring of changes in endothelial cell morphology and adhesion induced by SEMA3E via plexin D1. Afterwards, analogic electrical impedance measurements are converted into digital numeric signals that can then be analyzed by mathematical and statistical methods.


Assuntos
Impedância Elétrica , Proteínas de Neoplasias/metabolismo , Receptores de Superfície Celular/metabolismo , Semaforinas/metabolismo , Adesão Celular , Moléculas de Adesão Celular/metabolismo , Células Endoteliais/metabolismo , Inativação Gênica , Células Endoteliais da Veia Umbilical Humana , Humanos , Proteínas de Neoplasias/genética , Proteínas do Tecido Nervoso/metabolismo , Ligação Proteica , RNA Interferente Pequeno/genética , Receptores de Superfície Celular/genética , Semaforinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...