Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genetics ; 227(3)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38657110

RESUMO

The accurate segregation of homologous chromosomes during the Meiosis I reductional division in most sexually reproducing eukaryotes requires crossing over between homologs. In baker's yeast approximately 80% of meiotic crossovers result from Mlh1-Mlh3 and Exo1 acting to resolve double-Holliday junction intermediates in a biased manner. Little is known about how Mlh1-Mlh3 is recruited to recombination intermediates to perform its role in crossover resolution. We performed a gene dosage screen in baker's yeast to identify novel genetic interactors with Mlh1-Mlh3. Specifically, we looked for genes whose lowered dosage reduced meiotic crossing over using sensitized mlh3 alleles that disrupt the stability of the Mlh1-Mlh3 complex and confer defects in mismatch repair but do not disrupt meiotic crossing over. To our surprise we identified genetic interactions between MLH3 and DMC1, the recombinase responsible for recombination between homologous chromosomes during meiosis. We then showed that Mlh3 physically interacts with Dmc1 in vitro and in vivo. Partial complementation of Mlh3 crossover functions was observed when MLH3 was expressed under the control of the CLB1 promoter (NDT80 regulon), suggesting that Mlh3 function can be provided late in meiotic prophase at some functional cost. A model for how Dmc1 could facilitate Mlh1-Mlh3's role in crossover resolution is presented.


Assuntos
Proteínas de Ciclo Celular , Troca Genética , Meiose , Proteína 1 Homóloga a MutL , Proteínas MutL , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteína 1 Homóloga a MutL/genética , Proteína 1 Homóloga a MutL/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas MutL/metabolismo , Proteínas MutL/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Ligação Proteica
2.
bioRxiv ; 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38014100

RESUMO

The accurate segregation of homologous chromosomes during the Meiosis I reductional division in most sexually reproducing eukaryotes requires crossing over between homologs. In baker's yeast approximately 80 percent of meiotic crossovers result from Mlh1-Mlh3 and Exo1 acting to resolve double-Holliday junction (dHJ) intermediates in a biased manner. Little is known about how Mlh1-Mlh3 is recruited to recombination intermediates and whether it interacts with other meiotic factors prior to its role in crossover resolution. We performed a haploinsufficiency screen in baker's yeast to identify novel genetic interactors with Mlh1-Mlh3 using sensitized mlh3 alleles that disrupt the stability of the Mlh1-Mlh3 complex and confer defects in mismatch repair but do not disrupt meiotic crossing over. We identified several genetic interactions between MLH3 and DMC1, the recombinase responsible for recombination between homologous chromosomes during meiosis. We then showed that Mlh3 physically interacts with Dmc1 in vitro and at times in meiotic prophase when Dmc1 acts as a recombinase. Interestingly, restricting MLH3 expression to roughly the time of crossover resolution resulted in a mlh3 null-like phenotype for crossing over. Our data are consistent with a model in which Dmc1 nucleates a polymer of Mlh1-Mlh3 to promote crossing over.

3.
PLoS Biol ; 21(4): e3002085, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37079643

RESUMO

In most sexually reproducing organisms crossing over between chromosome homologs during meiosis is essential to produce haploid gametes. Most crossovers that form in meiosis in budding yeast result from the biased resolution of double Holliday junction (dHJ) intermediates. This dHJ resolution step involves the actions of Rad2/XPG family nuclease Exo1 and the Mlh1-Mlh3 mismatch repair endonuclease. Here, we provide genetic evidence in baker's yeast that Exo1 promotes meiotic crossing over by protecting DNA nicks from ligation. We found that structural elements in Exo1 that interact with DNA, such as those required for the bending of DNA during nick/flap recognition, are critical for its role in crossing over. Consistent with these observations, meiotic expression of the Rad2/XPG family member Rad27 partially rescued the crossover defect in exo1 null mutants, and meiotic overexpression of Cdc9 ligase reduced the crossover levels of exo1 DNA-binding mutants to levels that approached the exo1 null. In addition, our work identified a role for Exo1 in crossover interference. Together, these studies provide experimental evidence for Exo1-protected nicks being critical for the formation of meiotic crossovers and their distribution.


Assuntos
Proteínas de Saccharomyces cerevisiae , Troca Genética , Quebras de DNA de Cadeia Simples , DNA Cruciforme , Endonucleases Flap/genética , Endonucleases Flap/metabolismo , Meiose/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Cureus ; 13(1): e12967, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33654630

RESUMO

Coronavirus disease 2019 (COVID-19) is a novel disease with various complications involving different organ systems caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. While the respiratory complications associated with COVID-19 have been well publicized, our understanding of the nonpulmonary complications of COVID-19 is lacking. Herein we present a case of a middle-aged woman who developed myopericarditis, pericardial effusion, and tamponade in the setting of COVID-19 infection.

5.
Langmuir ; 34(50): 15560-15568, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30407827

RESUMO

Vesicles and other bilayered membranous structures can self-assemble from single hydrocarbon chain amphiphiles. Their formation and stability are highly dependent on experimental conditions such as ionic strength, pH, and temperature. The addition of divalent cations, for example, often results in the disruption of vesicles made of a single fatty acid species through amphiphile precipitation. However, membranes composed of amphiphile mixtures have been shown to be more resistant to low millimolar concentrations of divalent cations at room temperature. In this report, several mixtures of amphiphiles are examined for their propensity to self-assemble into membranous vesicular structures under extreme environmental conditions of low pH, high ionic strengths, and temperatures. In particular, mixtures of decylamine with polar cosurfactants were found to efficiently form membranes under these conditions far away from those normally supporting vesicle formation. We further examined decanoic acid/decylamine mixtures in detail. At pH 2 in low ionic strength solutions, the amphiphiles formed oily or crystalline structures; however, the introduction of salts or/and strong acids in conjunction with high temperature induced a stable vesiculation. Thus, extreme environments, such as volcanic or vent environments whose environmental conditions are known to support high chemical reactivity, could have harbored and most significantly promoted the formation of simple organic compartments that preceded cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA