Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JAMA Netw Open ; 7(5): e2412291, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38805228

RESUMO

Importance: Neurodevelopmental outcomes for children with congenital heart defects (CHD) have improved minimally over the past 20 years. Objectives: To assess the feasibility and tolerability of maternal progesterone therapy as well as the magnitude of the effect on neurodevelopment for fetuses with CHD. Design, Setting, and Participants: This double-blinded individually randomized parallel-group clinical trial of vaginal natural progesterone therapy vs placebo in participants carrying fetuses with CHD was conducted between July 2014 and November 2021 at a quaternary care children's hospital. Participants included maternal-fetal dyads where the fetus had CHD identified before 28 weeks' gestational age and was likely to need surgery with cardiopulmonary bypass in the neonatal period. Exclusion criteria included a major genetic or extracardiac anomaly other than 22q11 deletion syndrome and known contraindication to progesterone. Statistical analysis was performed June 2022 to April 2024. Intervention: Participants were 1:1 block-randomized to vaginal progesterone or placebo by diagnosis: hypoplastic left heart syndrome (HLHS), transposition of the great arteries (TGA), and other CHD diagnoses. Treatment was administered twice daily between 28 and up to 39 weeks' gestational age. Main Outcomes and Measures: The primary outcome was the motor score of the Bayley Scales of Infant and Toddler Development-III; secondary outcomes included language and cognitive scales. Exploratory prespecified subgroups included cardiac diagnosis, fetal sex, genetic profile, and maternal fetal environment. Results: The 102 enrolled fetuses primarily had HLHS (n = 52 [50.9%]) and TGA (n = 38 [37.3%]), were more frequently male (n = 67 [65.7%]), and without genetic anomalies (n = 61 [59.8%]). The mean motor score differed by 2.5 units (90% CI, -1.9 to 6.9 units; P = .34) for progesterone compared with placebo, a value not statistically different from 0. Exploratory subgroup analyses suggested treatment heterogeneity for the motor score for cardiac diagnosis (P for interaction = .03) and fetal sex (P for interaction = .04), but not genetic profile (P for interaction = .16) or maternal-fetal environment (P for interaction = .70). Conclusions and Relevance: In this randomized clinical trial of maternal progesterone therapy, the overall effect was not statistically different from 0. Subgroup analyses suggest heterogeneity of the response to progesterone among CHD diagnosis and fetal sex. Trial Registration: ClinicalTrials.gov Identifier: NCT02133573.


Assuntos
Cardiopatias Congênitas , Progesterona , Humanos , Progesterona/uso terapêutico , Feminino , Cardiopatias Congênitas/tratamento farmacológico , Cardiopatias Congênitas/complicações , Masculino , Gravidez , Método Duplo-Cego , Lactente , Adulto , Recém-Nascido , Desenvolvimento Infantil/efeitos dos fármacos , Progestinas/uso terapêutico , Transtornos do Neurodesenvolvimento
3.
bioRxiv ; 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37873373

RESUMO

Sleep loss has been associated with increased seizure risk since antiquity. Despite this observation standing the test of time, how poor sleep drives susceptibility to seizures remains unclear. To identify underlying mechanisms, we restricted sleep in Drosophila epilepsy models and developed a method to identify spontaneous seizures using quantitative video tracking. Here we find that sleep loss exacerbates seizures but only when flies experience increased sleep need, or sleepiness , and not necessarily with reduced sleep quantity. This is supported by the paradoxical finding that acute activation of sleep-promoting circuits worsens seizures, because it increases sleep need without changing sleep amount. Sleep-promoting circuits become hyperactive after sleep loss and are associated with increased whole-brain activity. During sleep restriction, optogenetic inhibition of sleep-promoting circuits to reduce sleepiness protects against seizures. Downregulation of the 5HT1A serotonin receptor in sleep-promoting cells mediates the effect of sleep need on seizures, and we identify an FDA-approved 5HT1A agonist to mitigate seizures. Our findings demonstrate that while homeostatic sleep is needed to recoup lost sleep, it comes at the cost of increasing seizure susceptibility. We provide an unexpected perspective on interactions between sleep and seizures, and surprisingly implicate sleep- promoting circuits as a therapeutic target for seizure control.

4.
Med ; 3(12): 883-900.e13, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36198312

RESUMO

BACKGROUND: Universities are vulnerable to infectious disease outbreaks, making them ideal environments to study transmission dynamics and evaluate mitigation and surveillance measures. Here, we analyze multimodal COVID-19-associated data collected during the 2020-2021 academic year at Colorado Mesa University and introduce a SARS-CoV-2 surveillance and response framework. METHODS: We analyzed epidemiological and sociobehavioral data (demographics, contact tracing, and WiFi-based co-location data) alongside pathogen surveillance data (wastewater and diagnostic testing, and viral genomic sequencing of wastewater and clinical specimens) to characterize outbreak dynamics and inform policy. We applied relative risk, multiple linear regression, and social network assortativity to identify attributes or behaviors associated with contracting SARS-CoV-2. To characterize SARS-CoV-2 transmission, we used viral sequencing, phylogenomic tools, and functional assays. FINDINGS: Athletes, particularly those on high-contact teams, had the highest risk of testing positive. On average, individuals who tested positive had more contacts and longer interaction durations than individuals who never tested positive. The distribution of contacts per individual was overdispersed, although not as overdispersed as the distribution of phylogenomic descendants. Corroboration via technical replicates was essential for identification of wastewater mutations. CONCLUSIONS: Based on our findings, we formulate a framework that combines tools into an integrated disease surveillance program that can be implemented in other congregate settings with limited resources. FUNDING: This work was supported by the National Science Foundation, the Hertz Foundation, the National Institutes of Health, the Centers for Disease Control and Prevention, the Massachusetts Consortium on Pathogen Readiness, the Howard Hughes Medical Institute, the Flu Lab, and the Audacious Project.


Assuntos
COVID-19 , SARS-CoV-2 , Estados Unidos , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , Surtos de Doenças , Universidades , Busca de Comunicante
5.
Patterns (N Y) ; 3(8): 100572, 2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36033592

RESUMO

An app-based educational outbreak simulator, Operation Outbreak (OO), seeks to engage and educate participants to better respond to outbreaks. Here, we examine the utility of OO for understanding epidemiological dynamics. The OO app enables experience-based learning about outbreaks, spreading a virtual pathogen via Bluetooth among participating smartphones. Deployed at many colleges and in other settings, OO collects anonymized spatiotemporal data, including the time and duration of the contacts among participants of the simulation. We report the distribution, timing, duration, and connectedness of student social contacts at two university deployments and uncover cryptic transmission pathways through individuals' second-degree contacts. We then construct epidemiological models based on the OO-generated contact networks to predict the transmission pathways of hypothetical pathogens with varying reproductive numbers. Finally, we demonstrate that the granularity of OO data enables institutions to mitigate outbreaks by proactively and strategically testing and/or vaccinating individuals based on individual social interaction levels.

6.
Nat Med ; 28(5): 1083-1094, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35130561

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic has demonstrated a clear need for high-throughput, multiplexed and sensitive assays for detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other respiratory viruses and their emerging variants. Here, we present a cost-effective virus and variant detection platform, called microfluidic Combinatorial Arrayed Reactions for Multiplexed Evaluation of Nucleic acids (mCARMEN), which combines CRISPR-based diagnostics and microfluidics with a streamlined workflow for clinical use. We developed the mCARMEN respiratory virus panel to test for up to 21 viruses, including SARS-CoV-2, other coronaviruses and both influenza strains, and demonstrated its diagnostic-grade performance on 525 patient specimens in an academic setting and 166 specimens in a clinical setting. We further developed an mCARMEN panel to enable the identification of 6 SARS-CoV-2 variant lineages, including Delta and Omicron, and evaluated it on 2,088 patient specimens with near-perfect concordance to sequencing-based variant classification. Lastly, we implemented a combined Cas13 and Cas12 approach that enables quantitative measurement of SARS-CoV-2 and influenza A viral copies in samples. The mCARMEN platform enables high-throughput surveillance of multiple viruses and variants simultaneously, enabling rapid detection of SARS-CoV-2 variants.


Assuntos
COVID-19 , Influenza Humana , COVID-19/diagnóstico , Humanos , Microfluídica , SARS-CoV-2/genética
7.
Nat Commun ; 13(1): 604, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35105861

RESUMO

The role of PPM1D mutations in de novo gliomagenesis has not been systematically explored. Here we analyze whole genome sequences of 170 pediatric high-grade gliomas and find that truncating mutations in PPM1D that increase the stability of its phosphatase are clonal driver events in 11% of Diffuse Midline Gliomas (DMGs) and are enriched in primary pontine tumors. Through the development of DMG mouse models, we show that PPM1D mutations potentiate gliomagenesis and that PPM1D phosphatase activity is required for in vivo oncogenesis. Finally, we apply integrative phosphoproteomic and functional genomics assays and find that oncogenic effects of PPM1D truncation converge on regulators of cell cycle, DNA damage response, and p53 pathways, revealing therapeutic vulnerabilities including MDM2 inhibition.


Assuntos
Glioma/genética , Mutação , Oncogenes/genética , Proteína Fosfatase 2C/genética , Adolescente , Adulto , Animais , Neoplasias do Tronco Encefálico/genética , Carcinogênese/genética , Ciclo Celular , Criança , Pré-Escolar , Dano ao DNA , Modelos Animais de Doenças , Feminino , Células HEK293 , Humanos , Lactente , Masculino , Camundongos , Proteínas Proto-Oncogênicas c-mdm2 , Transcriptoma , Proteína Supressora de Tumor p53/genética , Adulto Jovem
8.
Cell ; 185(3): 485-492.e10, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35051367

RESUMO

An outbreak of over 1,000 COVID-19 cases in Provincetown, Massachusetts (MA), in July 2021-the first large outbreak mostly in vaccinated individuals in the US-prompted a comprehensive public health response, motivating changes to national masking recommendations and raising questions about infection and transmission among vaccinated individuals. To address these questions, we combined viral genomic and epidemiological data from 467 individuals, including 40% of outbreak-associated cases. The Delta variant accounted for 99% of cases in this dataset; it was introduced from at least 40 sources, but 83% of cases derived from a single source, likely through transmission across multiple settings over a short time rather than a single event. Genomic and epidemiological data supported multiple transmissions of Delta from and between fully vaccinated individuals. However, despite its magnitude, the outbreak had limited onward impact in MA and the US overall, likely due to high vaccination rates and a robust public health response.


Assuntos
COVID-19/epidemiologia , COVID-19/imunologia , COVID-19/transmissão , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/virologia , Criança , Pré-Escolar , Busca de Comunicante/métodos , Surtos de Doenças , Feminino , Genoma Viral , Humanos , Lactente , Recém-Nascido , Masculino , Massachusetts/epidemiologia , Pessoa de Meia-Idade , Epidemiologia Molecular , Filogenia , SARS-CoV-2/classificação , Vacinação , Sequenciamento Completo do Genoma , Adulto Jovem
9.
medRxiv ; 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34704102

RESUMO

Multiple summer events, including large indoor gatherings, in Provincetown, Massachusetts (MA), in July 2021 contributed to an outbreak of over one thousand COVID-19 cases among residents and visitors. Most cases were fully vaccinated, many of whom were also symptomatic, prompting a comprehensive public health response, motivating changes to national masking recommendations, and raising questions about infection and transmission among vaccinated individuals. To characterize the outbreak and the viral population underlying it, we combined genomic and epidemiological data from 467 individuals, including 40% of known outbreak-associated cases. The Delta variant accounted for 99% of sequenced outbreak-associated cases. Phylogenetic analysis suggests over 40 sources of Delta in the dataset, with one responsible for a single cluster containing 83% of outbreak-associated genomes. This cluster was likely not the result of extensive spread at a single site, but rather transmission from a common source across multiple settings over a short time. Genomic and epidemiological data combined provide strong support for 25 transmission events from, including many between, fully vaccinated individuals; genomic data alone provides evidence for an additional 64. Together, genomic epidemiology provides a high-resolution picture of the Provincetown outbreak, revealing multiple cases of transmission of Delta from fully vaccinated individuals. However, despite its magnitude, the outbreak was restricted in its onward impact in MA and the US, likely due to high vaccination rates and a robust public health response.

10.
Viruses ; 13(8)2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34452470

RESUMO

While investigating a signal of adaptive evolution in humans at the gene LARGE, we encountered an intriguing finding by Dr. Stefan Kunz that the gene plays a critical role in Lassa virus binding and entry. This led us to pursue field work to test our hypothesis that natural selection acting on LARGE-detected in the Yoruba population of Nigeria-conferred resistance to Lassa Fever in some West African populations. As we delved further, we conjectured that the "emerging" nature of recently discovered diseases like Lassa fever is related to a newfound capacity for detection, rather than a novel viral presence, and that humans have in fact been exposed to the viruses that cause such diseases for much longer than previously suspected. Dr. Stefan Kunz's critical efforts not only laid the groundwork for this discovery, but also inspired and catalyzed a series of events that birthed Sentinel, an ambitious and large-scale pandemic prevention effort in West Africa. Sentinel aims to detect and characterize deadly pathogens before they spread across the globe, through implementation of its three fundamental pillars: Detect, Connect, and Empower. More specifically, Sentinel is designed to detect known and novel infections rapidly, connect and share information in real time to identify emerging threats, and empower the public health community to improve pandemic preparedness and response anywhere in the world. We are proud to dedicate this work to Stefan Kunz, and eagerly invite new collaborators, experts, and others to join us in our efforts.


Assuntos
Planejamento em Desastres , Febre Lassa/epidemiologia , Vírus Lassa/fisiologia , África Ocidental/epidemiologia , Planejamento em Desastres/métodos , Humanos , Febre Lassa/genética , Febre Lassa/prevenção & controle , Febre Lassa/virologia , Vírus Lassa/genética , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/imunologia , Nigéria/epidemiologia , Pandemias , Polimorfismo Genético , Receptores Virais/genética , Receptores Virais/imunologia
11.
Nat Commun ; 10(1): 2400, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31160565

RESUMO

BET-bromodomain inhibition (BETi) has shown pre-clinical promise for MYC-amplified medulloblastoma. However, the mechanisms for its action, and ultimately for resistance, have not been fully defined. Here, using a combination of expression profiling, genome-scale CRISPR/Cas9-mediated loss of function and ORF/cDNA driven rescue screens, and cell-based models of spontaneous resistance, we identify bHLH/homeobox transcription factors and cell-cycle regulators as key genes mediating BETi's response and resistance. Cells that acquire drug tolerance exhibit a more neuronally differentiated cell-state and expression of lineage-specific bHLH/homeobox transcription factors. However, they do not terminally differentiate, maintain expression of CCND2, and continue to cycle through S-phase. Moreover, CDK4/CDK6 inhibition delays acquisition of resistance. Therefore, our data provide insights about the mechanisms underlying BETi effects and the appearance of resistance and support the therapeutic use of combined cell-cycle inhibitors with BETi in MYC-amplified medulloblastoma.


Assuntos
Azepinas/farmacologia , Ciclo Celular/efeitos dos fármacos , Neoplasias Cerebelares/tratamento farmacológico , Meduloblastoma/tratamento farmacológico , Neurogênese/efeitos dos fármacos , Proteínas/antagonistas & inibidores , Triazóis/farmacologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/efeitos dos fármacos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Sistemas CRISPR-Cas , Proteínas de Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Linhagem da Célula , Neoplasias Cerebelares/genética , Ciclina D2/efeitos dos fármacos , Ciclina D2/metabolismo , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos , Perfilação da Expressão Gênica , Humanos , Meduloblastoma/genética , Camundongos , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Fase S/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...