Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 11(7): e0157288, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27379382

RESUMO

BACKGROUND: The platelet-derived growth factor receptor ß (PDGFRß)+ perivascular cell activation becomes increasingly recognized as a main source of scar-associated kidney myofibroblasts and recently emerged as a new cellular therapeutic target. AIMS: In this regard, we first confirmed the presence of PDGFRß+ perivascular cells in a human case of end-stage aristolochic acid nephropathy (AAN) and thereafter we focused on the early fibrosis events of transforming growth factor ß (TGFß) inhibition in a rat model of AAN. MATERIALS AND METHODS: Neutralizing anti-TGFß antibody (1D11) and its control isotype (13C4) were administered (5 mg/kg, i.p.) at Days -1, 0, 2 and 4; AA (15 mg/kg, sc) was injected daily. RESULTS: At Day 5, 1D11 significantly suppressed p-Smad2/3 signaling pathway improving renal function impairment, reduced the score of acute tubular necrosis, peritubular capillaritis, interstitial inflammation and neoangiogenesis. 1D11 markedly decreased interstitial edema, disruption of tubular basement membrane loss of brush border, cytoplasmic edema and organelle ultrastructure alterations (mitochondrial disruption and endoplasmic reticulum edema) in proximal tubular epithelial cells. Moreover, 1D11 significantly inhibited p-PERK activation and attenuated dysregulation of unfolded protein response (UPR) pathways, endoplasmic reticulum and mitochondrial proteostasis in vivo and in vitro. CONCLUSIONS: The early inhibition of p-Smad2/3 signaling pathway improved acute renal function impairment, partially prevented epithelial-endothelial axis activation by maintaining PTEC proteostasis and reduced early PDGFRß+ pericytes-derived myofibroblasts accumulation.


Assuntos
Injúria Renal Aguda/metabolismo , Proteínas Mitocondriais/metabolismo , Pericitos/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/prevenção & controle , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/farmacologia , Ácidos Aristolóquicos , Western Blotting , Linhagem Celular , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Homeostase/efeitos dos fármacos , Humanos , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/metabolismo , Masculino , Modelos Biológicos , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/metabolismo , Pericitos/efeitos dos fármacos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Proteínas Smad/metabolismo , Fatores de Tempo , Fator de Crescimento Transformador beta/imunologia
2.
Kidney Int ; 88(1): 61-71, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25715119

RESUMO

Renal ischemia-reperfusion injury (IRI) is a pathological process that may lead to acute renal failure and chronic dysfunction in renal allografts. During IRI, hyaluronan (HA) accumulates in the kidney, but suppression of HA accumulation during IRI protects the kidney from ischemic insults. Here we tested whether Hyal1-/- and Hyal2-/- mice display exacerbated renal damage following unilateral IRI due to a higher HA accumulation in the post-ischemic kidney compared with that in the kidney of wild-type mice. Two days after IRI in male mice there was accumulation of HA and CD44 in the kidney, marked tubular damage, infiltration, and increase creatininemia in wild-type mice. Knockout mice exhibited higher amounts of HA and higher creatininemia. Seven days after injury, wild-type mice had a significant decrease in renal damage, but knockout mice still displayed exacerbated inflammation. HA and CD44 together with α-smooth muscle actin and collagen types I and III expression were increased in knockout compared with wild-type mice 30 days after IRI. Thus, both HA-degrading enzymes seem to be protective against IRI most likely by reducing HA accumulation in the post-ischemic kidney and decreasing the inflammatory processes. Deficiency in either HYAL1 or HYAL2 leads to enhanced HA accumulation in the post-ischemic kidney and consequently worsened inflammatory response, increased tubular damage, and fibrosis.


Assuntos
Injúria Renal Aguda/etiologia , Ácido Hialurônico/metabolismo , Hialuronoglucosaminidase/deficiência , Rim/patologia , Mucopolissacaridoses/complicações , Traumatismo por Reperfusão/complicações , Actinas/metabolismo , Injúria Renal Aguda/genética , Animais , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Quimiocina CXCL2/metabolismo , Colágeno Tipo I/metabolismo , Colágeno Tipo III/metabolismo , Creatinina/sangue , Fibrose , Proteínas Ligadas por GPI/genética , Receptores de Hialuronatos/metabolismo , Hialuronoglucosaminidase/genética , Túbulos Renais/patologia , Contagem de Leucócitos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mucopolissacaridoses/genética , Nefrite/etiologia , Nefrite/genética , Nefrite/patologia , Neutrófilos , RNA Mensageiro/metabolismo , Traumatismo por Reperfusão/metabolismo
3.
Acta Histochem ; 117(1): 83-91, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25468725

RESUMO

Hyaluronidase 1 (HYAL1) and hyaluronidase 2 (HYAL2) are the major hyaluronidases acting synergistically to degrade hyaluronan (HA). In the kidney, HA is distributed heterogeneously. Our goal was to determine the consequences of a lack of either HYAL1 or HYAL2 (using specific knockout mice) on renal function and on renal HA accumulation. Experiments were performed in Hyal1(-/-) and Hyal2(-/-) mice and in their wild-type controls. HA concentration was measured in the plasma and kidney tissue and its distribution through the different kidney zones was examined by immunohistochemistry. Relative mRNA expressions of HYAL1, HYAL2 and the 3 main HA synthases were evaluated by quantitative RT-PCR. Results: Kidney function was not impaired in the knockout mice but they displayed elevated HA concentrations in the plasma and in the kidney. Hyal1(-/-) mice presented an accumulation of HA inside the proximal tubular cells whereas Hyal2(-/-) mice showed HA accumulation in the interstitial space. In the cortex and in the outer medulla, HYAL1 mRNA expression was up-regulated in Hyal2(-/-) mice. From our study we conclude that somatic hyaluronidases are not required for renal function. However, HYAL1 is necessary for the breakdown of intracellular HA in the cortex, whereas HYAL2 is essential for the degradation of extracellular HA in all kidney regions.


Assuntos
Regulação Enzimológica da Expressão Gênica/fisiologia , Ácido Hialurônico/metabolismo , Hialuronoglucosaminidase/biossíntese , Córtex Renal/enzimologia , Animais , Proteínas Ligadas por GPI/biossíntese , Proteínas Ligadas por GPI/genética , Glucuronosiltransferase/genética , Glucuronosiltransferase/metabolismo , Hialuronan Sintases , Ácido Hialurônico/genética , Hialuronoglucosaminidase/genética , Córtex Renal/citologia , Camundongos , Camundongos Knockout
4.
Clin Exp Pharmacol Physiol ; 41(11): 911-20, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25115485

RESUMO

The Wistar-Furth (WF) rat strain is usually used in models of full major histocompatibility complex-mismatched kidney transplantation. Because these rats have been demonstrated to be resistant to several models of chronic kidney disease, the aim of the present study was to investigate their potential resistance to renal ischaemia-reperfusion (I/R) injury compared with another strain, namely Wistar-Hanover (WH) rats. Anaesthetized male WH and WF rats were submitted to I/R by occlusion of the left renal artery and contralateral nephrectomy. Urine, blood and tissue samples were collected at different time points after I/R to evaluate renal function, inflammation and tubular injury, along with determination of nitric oxide synthase (NOS) expression and thromboxane A2 (TxA2 ) production. Post-ischaemic renal function was better preserved in WF than WH rats, as evidenced by reduced levels of creatininaemia, urinary neutrophil gelatinase-associated lipocalin excretion and proteinuria. In addition, WF rats had less intrarenal inflammation than WH rats after I/R injury. These observations were associated with maintenance of neuronal NOS expression, along with lower induction of inducible NOS expression in WF versus WH rats. Moreover, WF rats excreted a significantly lower amount of TxB2 . The results indicate that WF rats are more resistant to an I/R injury than WH rats in terms of renal function and inflammation. These observations are associated with differential regulation of intrarenal NOS expression, as well as a reduction in thromboxane production, which could contribute to a better outcome for the postischaemic kidney in WF rats.


Assuntos
Modelos Animais de Doenças , Rim/metabolismo , Óxido Nítrico/biossíntese , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Tromboxano A2/biossíntese , Doença Aguda , Animais , Dinoprostona/urina , Rim/irrigação sanguínea , Rim/imunologia , Testes de Função Renal , Masculino , Óxido Nítrico Sintase/genética , Estresse Oxidativo , Ratos Endogâmicos WF , Reação em Cadeia da Polimerase em Tempo Real , Traumatismo por Reperfusão/imunologia , Traumatismo por Reperfusão/urina , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tromboxano B2/urina
5.
Nephrol Dial Transplant ; 28(10): 2484-93, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24078641

RESUMO

BACKGROUND: Ischaemia-reperfusion injury (IRI) to the kidney is a complex pathophysiological process that leads to acute renal failure and chronic dysfunction in renal allografts. It was previously demonstrated that during IRI, hyaluronan (HA) accumulates in the cortical and external medullary interstitium along with an increased expression of its main receptor, CD44, on inflammatory and tubular cells. The HA-CD44 pair may be involved in persistent post-ischaemic inflammation. Thus, we sought to determine the role of HA in the pathophysiology of ischaemia-reperfusion (IR) by preventing its accumulation in post-ischaemic kidney. METHODS: C57BL/6 mice received a diet containing 4-methylumbelliferone (4-MU), a potent HA synthesis inhibitor. At the end of the treatment, unilateral renal IR was induced and mice were euthanized 48 h or 30 days post-IR. RESULTS: 4-MU treatment for 14 weeks reduced the plasma HA level and intra-renal HA content at 48 h post-IR, as well as CD44 expression, creatininemia and histopathological lesions. Moreover, inflammation was significantly attenuated and proliferation was reduced in animals treated with 4-MU. In addition, 4-MU-treated mice had a significantly reduced expression of α-SMA and collagen types I and III, i.e. less renal fibrosis, 30 days after IR compared with untreated mice. CONCLUSION: Our results demonstrate that HA plays a significant role in the pathogenesis of IRI, perhaps in part through reduced expression of CD44. The suppression of HA accumulation during IR may protect renal function against ischaemic insults.


Assuntos
Injúria Renal Aguda/prevenção & controle , Modelos Animais de Doenças , Ácido Hialurônico/antagonistas & inibidores , Himecromona/farmacologia , Inflamação/prevenção & controle , Traumatismo por Reperfusão/prevenção & controle , Injúria Renal Aguda/etiologia , Animais , Ácido Hialurônico/metabolismo , Indicadores e Reagentes/farmacologia , Inflamação/etiologia , Testes de Função Renal , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão/complicações
6.
PLoS One ; 8(1): e54683, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23372752

RESUMO

BACKGROUND: The design of new technologies for treatment of human disorders such as protein deficiencies is a complex and difficult task. Particularly, the construction of artificial organs, based on the immunoisolation of protein-secreting cells, requires the use of suitable materials which have to be biocompatible with the immunoisolated cells and avoid any inappropriate host response. METHODOLOGY/PRINCIPAL FINDINGS: This work investigates the in vivo behavior of mechanically resistant hybrid beads which can be considered as a model for artificial organ for cell therapy. This hybrid system was designed and fabricated via the encapsulation of living cells (HepG2) within alginate-silica composites. Two types of beads (alginate-silica hybrid (AS) or alginate/silica hybrid subsequently covered by an external layer of pure alginate (ASA)), with or without HepG2 cells, were implanted into several female Wistar rats. After four weeks, the potential inflammatory local response that might be due to the presence of materials was studied by histochemistry. The results showed that the performance of ASA beads was quite promising compared to AS beads, where less abnormal rat behaviour and less inflammatory cells in histological sections were observed in the case of ASA beads. CONCLUSIONS/SIGNIFICANCE: The current study highlights that alginate-silica composite materials coated with an extra-alginate shell offer much promise in the development of robust implantation devices and artificial organs.


Assuntos
Alginatos/química , Terapia Baseada em Transplante de Células e Tecidos , Microesferas , Sílica Gel/química , Animais , Vasos Sanguíneos/metabolismo , Feminino , Ácido Glucurônico/química , Células Hep G2 , Ácidos Hexurônicos/química , Humanos , Macrófagos/citologia , Músculo Esquelético/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...