Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomater Adv ; 135: 212726, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35475005

RESUMO

The development of nanoparticles (NPs) with potential therapeutic uses represents an area of vast interest in the scientific community during the last years. Recently, the pandemic caused by COVID-19 motivated a race for vaccines creation to overcome the crisis generated. This is a good demonstration that nanotechnology will most likely be the basis of future immunotherapy. Moreover, the number of publications based on nanosystems has significantly increased in recent years and it is expected that most of these developments can go on to experimentation in clinical stages soon. The therapeutic use of NPs to combat different diseases such as cancer, allergies or autoimmune diseases will depend on their characteristics, their targets, and the transported molecules. This review presents an in-depth analysis of recent advances that have been developed in order to obtain novel nanoparticulate based tools for the treatment of allergies, autoimmune diseases and for their use in vaccines. Moreover, it is highlighted that by providing targeted delivery an increase in the potential of vaccines to induce an immune response is expected in the future. Definitively, the here gathered analysis is a good demonstration that nanotechnology will be the basis of future immunotherapy.

2.
Ther Deliv ; 12(6): 443-459, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33902308

RESUMO

Aim: Nanoparticles (NPs) interaction with immune system is a growing topic of study. Materials & methods: Bare and amine grafted silica NPs effects on monocytes/macrophages cells were analyzed by flow cytometry, MTT test and LIVE/DEAD® viability/cytotoxicity assay. Results: Bare silica NPs inhibited proliferation and induced monocyte/macrophages activation (increasing CD40/CD80 expression besides pro-inflammatory cytokines and nitrite secretion). Furthermore, silica NPs increased cell membrane damage and reduced the number of living cells. In contrast, amine grafted silica NPs did not alter these parameters. Conclusion: Cell activation properties of bare silica NPs could be hindered after grafting with amine moieties. This strategy is useful to tune the immune system stimulation by NPs or to design NPs suitable to transport therapeutic molecules.


Assuntos
Nanopartículas , Dióxido de Silício , Sobrevivência Celular , Citocinas , Macrófagos , Monócitos
3.
Colloids Surf B Biointerfaces ; 193: 111128, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32450505

RESUMO

Nanoparticles (NPs) are being studied due to their potential use as therapeutic and immunomodulatory tools, including their ability to transport antigens with the aim to induce a specific immune response. The production of snake antivenoms (AV) involves several inoculations of venom (V) in the presence of adjuvants (ADJ) to improve the immune response of inoculated animals, causing a decrease in its quality and shelf life. Therefore, it is interesting to develop new strategies for reduce these side effects. For that reason, associating V to NPs to replace conventional ADJ could be a useful tool for future AV production. In this work, nanovenoms (NVs) were generated by the adsorption of Crotalus durissus terrificus (Cdt) V proteins over silica NPs (SiNPs) synthesized according to the Stöber method. Microphotographies obtained under Transmission Electron Microscopy (TEM) displayed a protein crown over NPs and Fourier Transform Infrared (FT-IR) presented the expected spectra for NVs resulting from the sum of those exhibited by Cdt V and SiNPs separately. SDS PAGE and immunoblotting assays confirmed the presence of proteins over SiNPs. Furthermore, the different enzymatic activities detected demonstrated that SiNPs were capable of binding V proteins preserving its activity and therefore would keep its native structure. In the same way, the NVs conserve the potential cytotoxic effects present in the V as we observed when culturing THP-1 cells with these complexes. This evidence allows us to infer that developed NVs could be used as a new platform for the production of antisera or for immunomodulatory therapies.


Assuntos
Venenos de Crotalídeos/química , Nanopartículas/química , Dióxido de Silício/química , Animais , Células Cultivadas , Crotalus , Humanos , Tamanho da Partícula , Propriedades de Superfície , Células THP-1
4.
Curr Pharm Des ; 25(37): 3960-3982, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31556850

RESUMO

Nanoparticles have gained ground in several fields. However, it is important to consider their potentially hazardous effects on humans, flora, and fauna. Human exposure to nanomaterials can occur unintentionally in daily life or in industrial settings, and the continuous exposure of the biological components (cells, receptors, proteins, etc.) of the immune system to these particles can trigger an unwanted immune response (activation or suppression). Here, we present different studies that have been carried out to evaluate the response of immune cells in the presence of nanoparticles and their possible applications in the biomedical field.


Assuntos
Sistema Imunitário , Nanopartículas , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...