Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Natl Sci Rev ; 10(7): nwad136, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37396487

RESUMO

Non-linear materials are cornerstones of modern optics and electronics. Strong dependence on the intrinsic properties of particular materials, however, inhibits the at-will extension of demanding non-linear effects, especially those second-order ones, to widely adopted centrosymmetric materials (for example, silicon) and technologically important burgeoning spectral domains (for example, terahertz frequencies). Here we introduce a universal route to efficient non-linear responses enabled by exciting non-linear Thomson scattering, a fundamental process in electrodynamics that was known to occur only in relativistic electrons in metamaterial composed of linear materials. Such a mechanism modulates the trajectory of charges, either intrinsically or extrinsically provided in solids, at twice the driving frequency, allowing second-harmonic generation at terahertz frequencies on crystalline silicon with extremely large non-linear susceptibility in our proof-of-concept experiments. By offering a substantially material- and frequency-independent platform, our approach opens new possibilities in the fields of on-demand non-linear optics, terahertz sources, strong field light-solid interactions and integrated photonic circuits.

2.
J Phys Condens Matter ; 33(37)2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34098537

RESUMO

Modern techniques for the investigation of correlated materials in the time domain combine selective excitation in the THz frequency range with selective probing of coupled structural, electronic and magnetic degrees of freedom using x-ray scattering techniques. Cryogenic sample temperatures are commonly required to prevent thermal occupation of the low energy modes and to access relevant material ground states. Here, we present a chamber optimized for high-field THz excitation and (resonant) x-ray diffraction at sample temperatures between 5 and 500 K. Directly connected to the beamline vacuum and featuring both a Beryllium window and an in-vacuum detector, the chamber covers the full (2-12.7) keV energy range of the femtosecond x-ray pulses available at the Bernina endstation of the SwissFEL free electron laser. Successful commissioning experiments made use of the energy tunability to selectively track the dynamics of the structural, magnetic and orbital order of Ca2RuO4and Tb2Ti2O7at the Ru (2.96 keV) and Tb (7.55 keV)L-edges, respectively. THz field amplitudes up to 1.12 MV cm-1peak field were demonstrated and used to excite the samples at temperatures as low as 5 K.

3.
Opt Lett ; 44(19): 4881-4884, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31568466

RESUMO

A laser supercontinuum is generated by cross-phase modulation (XPM) driven by an intense terahertz (THz) field in organic crystal OHQ-N2S. In this highly nonlinear medium, the THz electric field induces a time-varying optical phase modulation, which causes a spectacular spectral broadening and shifting of a co-propagating near-infrared laser pulse. The effect is enabled by the large electro-optic coefficient, the low absorption, and the good velocity matching between the laser and the THz pulse over the OHQ-N2S crystal thickness. The XPM occurs when the THz field is aligned along the polar axis of the OHQ-N2S. The results display a promising pathway for ultrafast control of the spectral and temporal properties of laser pulses using THz stimuli.

4.
Nat Commun ; 10(1): 1159, 2019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-30858368

RESUMO

The complex interplay among electronic, magnetic and lattice degrees of freedom in Mott-Hubbard materials leads to different types of insulator-to-metal transitions (IMT) which can be triggered by temperature, pressure, light irradiation and electric field. However, several questions remain open concerning the quantum or thermal nature of electric field-driven transition process. Here, using intense terahertz pulses, we reveal the emergence of an instantaneous purely-electronic IMT in the Mott-Hubbard vanadium sequioxide (V2O3) prototype material. While fast electronics allow thermal-driven transition involving Joule heating, which takes place after tens of picoseconds, terahertz electric field is able to induce a sub-picosecond electronic switching. We provide a comprehensive study of the THz induced Mott transition, showing a crossover from a fast quantum dynamics to a slower thermal dissipative evolution for increasing temperature. Strong-field terahertz-driven electronic transition paves the way to ultrafast electronic switches and high-harmonic generation in correlated systems.

5.
Opt Lett ; 43(9): 2062-2065, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29714746

RESUMO

We present proof-of-principle results on terahertz wavefront shaping by means of a deformable mirror (DM). The DM is based on a reflective gold-coated steel membrane pushed by 35 powerful stepper actuators to enable a surface deformation of up to 1 mm out of equilibrium. The maximum excursion is equivalent to 10 wavelengths of the terahertz source centered at 3 THz and, thus, offers excellent opportunities for shaping the terahertz wavefront and beam intensity profile. As a proof of principle, we demonstrate terahertz focal spot optimization towards the diffraction limit, focal depth shifting, and terahertz imaging application. The large aperture DM offers new opportunities for the wavefront manipulation demanded by high-field terahertz science. The extreme excursion range of the DM will be beneficial for beam shaping at other wavelengths, such as visible and UV.

6.
Nat Commun ; 8: 14885, 2017 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-28345584

RESUMO

Two-dimensional (2D) graphene emerged as an outstanding material for plasmonic and photonic applications due to its charge-density tunability, high electron mobility, optical transparency and mechanical flexibility. Recently, novel fabrication processes have realised a three-dimensional (3D) nanoporous configuration of high-quality monolayer graphene which provides a third dimension to this material. In this work, we investigate the optical behaviour of nanoporous graphene by means of terahertz and infrared spectroscopy. We reveal the presence of intrinsic 2D Dirac plasmons in 3D nanoporous graphene disclosing strong plasmonic absorptions tunable from terahertz to mid-infrared via controllable doping level and porosity. In the far-field the spectral width of these absorptions is large enough to cover most of the mid-Infrared fingerprint region with a single plasmon excitation. The enhanced surface area of nanoporous structures combined with their broad band plasmon absorption could pave the way for novel and competitive nanoporous-graphene based plasmonic-sensors.

7.
Nat Commun ; 7: 11421, 2016 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-27113395

RESUMO

Electrons with a linear energy/momentum dispersion are called massless Dirac electrons and represent the low-energy excitations in exotic materials such as graphene and topological insulators. Dirac electrons are characterized by notable properties such as a high mobility, a tunable density and, in topological insulators, a protection against backscattering through the spin-momentum locking mechanism. All those properties make graphene and topological insulators appealing for plasmonics applications. However, Dirac electrons are expected to present also a strong nonlinear optical behaviour. This should mirror in phenomena such as electromagnetic-induced transparency and harmonic generation. Here we demonstrate that in Bi2Se3 topological insulator, an electromagnetic-induced transparency is achieved under the application of a strong terahertz electric field. This effect, concomitantly determined by harmonic generation and charge-mobility reduction, is exclusively related to the presence of Dirac electron at the surface of Bi2Se3, and opens the road towards tunable terahertz nonlinear optical devices based on topological insulator materials.

8.
Nanoscale ; 8(8): 4667-71, 2016 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-26852877

RESUMO

A 3D Topological Insulator (TI) is an intrinsically stratified electronic material characterized by an insulating bulk and Dirac free electrons at the interface with vacuum or another dielectric. In this paper, we investigate, through terahertz (THz) spectroscopy, the plasmon excitation of Dirac electrons on thin films of (Bi1-xInx)2Se3 TI patterned in the form of a micro-ribbon array, across a Quantum Phase Transition (QPT) from the topological to a trivial insulating phase. The latter is achieved by In doping onto the Bi-site and is characterized by massive electrons at the surface. While the plasmon frequency is nearly independent of In content, the plasmon width undergoes a sudden broadening across the QPT, perfectly mirroring the single particle (free electron) behavior as measured on the same films. This strongly suggests that the topological protection from backscattering characterizing Dirac electrons in the topological phase extends also to their plasmon excitations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...