Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 6674, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32317709

RESUMO

The Middle Eocene Climatic Optimum (MECO) is a global warming event that occurred at around 40 Ma and lasted about 500 kyr. We study this event in an abyssal setting of the Tasman Sea, using the IODP Core U1511B-16R, collected during the expedition 371. We analyse magnetic, mineralogical, and chemical parameters to investigate the evolution of the sea bottom conditions at this site during the middle Eocene. We observe significant changes indicating the response to the MECO perturbation. Mn oxides, in which Mn occurs under an oxidation state around +4, indicate a high Eh water environment. A prominent Mn anomaly, occurring just above the MECO interval, indicates a shift toward higher pH conditions shortly after the end of this event. Our results suggest more acid bottom water over the Tasman abyssal plain during the MECO, and an abrupt end of these conditions. This work provides the first evidence of MECO at abyssal depths and shows that acidification affected the entire oceanic water column during this event.

2.
Sci Rep ; 9(1): 9357, 2019 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-31249387

RESUMO

The Middle Eocene Climatic Optimum (MECO) is a global warming event that occurred at about 40 Ma. In comparison to the most known global warming events of the Paleogene, the MECO has some peculiar features that make its interpretation controversial. The main peculiarities of the MECO are a duration of ~500 kyr and a carbon isotope signature that varies from site to site. Here we present new carbon and oxygen stable isotopes records (δ13C and δ18O) from three foraminiferal genera dwelling at different depths throughout the water column and the sea bottom during the middle Eocene, from eastern Turkey. We document that the MECO is related to major oceanographic and climatic changes in the Neo-Tethys and also in other oceanic basins. The carbon isotope signature of the MECO is difficult to interpret because it is highly variable from site to site. We hypothesize that such δ13C signature indicates highly unstable oceanographic and carbon cycle conditions, which may have been forced by the coincidence between a 400 kyr and a 2.4 Myr orbital eccentricity minimum. Such forcing has been also suggested for the Cretaceous Oceanic Anoxic Events, which resemble the MECO event more than the Cenozoic hyperthermals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...