Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMJ Open ; 13(12): e081099, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-38056942

RESUMO

INTRODUCTION: Relative to outdoor air pollution, there is little evidence examining the composition and concentrations of indoor air pollution and its associated health impacts. The INGENIOUS project aims to provide the comprehensive understanding of indoor air pollution in UK homes. METHODS AND ANALYSIS: 'Real Home Assessment' is a cross-sectional, multimethod study within INGENIOUS. This study monitors indoor air pollutants over 2 weeks using low-cost sensors placed in three rooms in 300 Born in Bradford (BiB) households. Building audits are completed by researchers, and participants are asked to complete a home survey and a health and behaviour questionnaire, in addition to recording household activities and health symptoms on at least 1 weekday and 1 weekend day. A subsample of 150 households will receive more intensive measurements of volatile organic compound and particulate matter for 3 days. Qualitative interviews conducted with 30 participants will identify key barriers and enablers of effective ventilation practices. Outdoor air pollution is measured in 14 locations across Bradford to explore relationships between indoor and outdoor air quality. Data will be analysed to explore total concentrations of indoor air pollutants, how these vary with building characteristics, and whether they are related to health symptoms. Interviews will be analysed through content and thematic analysis. ETHICS AND DISSEMINATION: Ethical approval has been obtained from the NHS Health Research Authority Yorkshire and the Humber (Bradford Leeds) Research Ethics Committee (22/YH/0288). We will disseminate findings using our websites, social media, publications and conferences. Data will be open access through the BiB, the Open Science Framework and the UK Data Service.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Poluição do Ar , Humanos , Poluentes Atmosféricos/análise , Estudos Transversais , Monitoramento Ambiental/métodos , Poluição do Ar/análise , Material Particulado/análise , Poluição do Ar em Ambientes Fechados/efeitos adversos , Poluição do Ar em Ambientes Fechados/análise , Reino Unido
2.
Innovation (Camb) ; 4(6): 100517, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37822762

RESUMO

Ever-increasing ambient ozone (O3) pollution in China has been exacerbating cardiopulmonary premature deaths. However, the urban-rural exposure inequity has seldom been explored. Here, we assess population-scale O3 exposure and mortality burdens between 1990 and 2019 based on integrated pollution tracking and epidemiological evidence. We find Chinese population have been suffering from climbing O3 exposure by 4.3 ± 2.8 ppb per decade as a result of rapid urbanization and growing prosperity of socioeconomic activities. Rural residents are broadly exposed to 9.8 ± 4.1 ppb higher ambient O3 than the adjacent urban citizens, and thus urbanization-oriented migration compromises the exposure-associated mortality on total population. Cardiopulmonary excess premature deaths attributable to long-term O3 exposure, 373,500 (95% uncertainty interval [UI]: 240,600-510,900) in 2019, is underestimated in previous studies due to ignorance of cardiovascular causes. Future O3 pollution policy should focus more on rural population who are facing an aggravating threat of mortality risks to ameliorate environmental health injustice.

3.
ACS Environ Au ; 3(3): 164-178, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37215437

RESUMO

Organic aerosols affect the planet's radiative balance by absorbing and scattering light as well as by activating cloud droplets. These organic aerosols contain chromophores, termed brown carbon (BrC), and can undergo indirect photochemistry, affecting their ability to act as cloud condensation nuclei (CCN). Here, we investigated the effect of photochemical aging by tracking the conversion of organic carbon into inorganic carbon, termed the photomineralization mechanism, and its effect on the CCN abilities in four different types of BrC samples: (1) laboratory-generated (NH4)2SO4-methylglyoxal solutions, (2) dissolved organic matter isolate from Suwannee River fulvic acid (SRFA), (3) ambient firewood smoke aerosols, and (4) ambient urban wintertime particulate matter in Padua, Italy. Photomineralization occurred in all BrC samples albeit at different rates, evidenced by photobleaching and by loss of organic carbon up to 23% over a simulated 17.6 h of sunlight exposure. These losses were correlated with the production of CO up to 4% and of CO2 up to 54% of the initial organic carbon mass, monitored by gas chromatography. Photoproducts of formic, acetic, oxalic and pyruvic acids were also produced during irradiation of the BrC solutions, but at different yields depending on the sample. Despite these chemical changes, CCN abilities did not change substantially for the BrC samples. In fact, the CCN abilities were dictated by the salt content of the BrC solution, trumping a photomineralization effect on the CCN abilities for the hygroscopic BrC samples. Solutions of (NH4)2SO4-methylglyoxal, SRFA, firewood smoke, and ambient Padua samples had hygroscopicity parameters κ of 0.6, 0.1, 0.3, and 0.6, respectively. As expected, the SRFA solution with a κ of 0.1 was most impacted by the photomineralization mechanism. Overall, our results suggest that the photomineralization mechanism is expected in all BrC samples and can drive changes in the optical properties and chemical composition of aging organic aerosols.

4.
RSC Adv ; 13(13): 8487-8495, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36926302

RESUMO

The plant cuticle covers the plant's entire aerial surface and acts as the outermost protective layer. Despite being crucial for the survival of plants, surprisingly little is known about its biosynthesis. Conventional analytical techniques are limited to the isolation and depolymerization of the polyester cutin, which forms the cuticular scaffold. Although this approach allows the elucidation of incorporated cutin monomers, it neglects unincorporated metabolites participating in cutin polymerization. The feasibility of a novel approach is tested for in situ analysis of unpolymerized cuticular metabolites to enhance the understanding of cuticle biology. Intact cotyledons of Brassica napus and Arabidopsis thaliana seedlings are immersed in organic solvents for 60 seconds. Extracts are analyzed using high-resolution direct infusion mass spectrometry. A variety of different diffusion routes of plant metabolites across the cuticle are discussed. The results reveal different feasibilities depending on the research question and cuticle permeabilities in combination with the analyte's polarity. Especially hydrophilic analytes are expected to be co-located in the cell wall beneath the cuticle causing systematic interferences when comparing plants with different cuticle permeabilities. These interferences limit data interpretation to qualitative rather than quantitative comparison. In contrast, quantitative data evaluation is facilitated when analyzing cuticle-specific metabolites or plants with similar cuticle permeabilities.

5.
Environ Sci Pollut Res Int ; 30(5): 12257-12268, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36109478

RESUMO

Evaluating the effects of neonicotinoids on forager bees in conditions as near as possible to those in nature presents a considerable challenge. Tackling this challenge is, however, necessary to establish their negative side effects on these pollinators. For instance, it is still under debate the mechanism by which bees seem to recognize low-level contaminations of neonicotinoid insecticides in nectar and pollen of the flowers they visit and limit collection to protect themselves and their hive from a possible intoxication. In this study, we propose an experimental system that involves the use of foragers in free flight foraging repeatedly on artificial feeders containing a sucrose solution contaminated with clothianidin, as well as foragers feeding at adjacent control feeders, allowing us to observe changes in their foraging activity. The progressive disappearance of foragers from the contaminated feeders became increasingly clear and rapid with the increase in clothianidin concentration. The lowest concentration at which we observed an effect was around 10 µg/L, which corresponds to the maximum residual concentration (10 ng/g) observed in pollen and nectar of flowers close to open fields sown with seeds coated with insecticides. At the highest concentrations tested (80 µg/L), there was an almost total abandonment of the feeders. The estimated quantity of contaminated sucrose solution collected by foragers showed an almost linear relationship inversely proportional to clothianidin concentration, whilst the estimated quantity of insecticide collected by a forager increased and then stabilised at the highest concentrations tested of 40 and 80 µg/L. Irregular mortality was not observed in front of the hives, furthermore, foragers did not show evident memory of the position of the treated units in the trials on the 2 consecutive days. The decrease in foraging activity in the presence of a few µg/L of insecticide in the sucrose solution appears to limit the introduction of elevated amounts of toxic substances into the hives, which would have serious consequences for the young bees and the brood. At the same time, in the absence of an alternative energy source, even reduced feeding of the hive can compromise colony health.


Assuntos
Inseticidas , Abelhas , Animais , Inseticidas/toxicidade , Néctar de Plantas , Nitrocompostos/toxicidade , Neonicotinoides , Sacarose
6.
Curr Biol ; 32(24): 5323-5334.e6, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36423640

RESUMO

Plants combine both chemical and structural means to appear colorful. We now have an extensive understanding of the metabolic pathways used by flowering plants to synthesize pigments, but the mechanisms remain obscure whereby cells produce microscopic structures sufficiently regular to interfere with light and create an optical effect. Here, we combine transgenic approaches in a novel model system, Hibiscus trionum, with chemical analyses of the cuticle, both in transgenic lines and in different species of Hibiscus, to investigate the formation of a semi-ordered diffraction grating on the petal surface. We show that regulating both cuticle production and epidermal cell growth is insufficient to determine the type of cuticular pattern produced. Instead, the chemical composition of the cuticle plays a crucial role in restricting the formation of diffraction gratings to the pigmented region of the petal. This suggests that buckling, driven by spatiotemporal regulation of cuticle chemistry, could pattern the petal surface at the nanoscale.


Assuntos
Flores , Hibiscus , Flores/fisiologia , Hibiscus/fisiologia , Modelos Biológicos
7.
Environ Sci Technol ; 56(18): 12945-12954, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36054832

RESUMO

The ozonolysis of alkenes contributes substantially to the formation of secondary organic aerosol (SOA), which are important modulators of air quality and the Earth's climate. Criegee intermediates (CIs) are abundantly formed through this reaction. However, their contributions to aerosol particle chemistry remain highly uncertain. In this work, we present the first application of a novel methodology, using spin traps, which simultaneously quantifies CIs produced from the ozonolysis of volatile organic compounds in the gas and particle phases. Only the smallest CI with one carbon atom was detected in the gas phase of a ß-caryophyllene ozonolysis reaction system. However, multiple particle-bound CIs were observed in ß-caryophyllene SOA. The concentration of the most abundant CI isomer in the particle phase was estimated to constitute ∼0.013% of the SOA mass under atmospherically relevant conditions. We also demonstrate that the lifetime of CIs in highly viscous SOA particles is at least on the order of minutes, substantially greater than their gas-phase lifetime. The confirmation of substantial concentrations of large CIs with elongated lifetimes in SOA raises new questions regarding their influence on the chemical evolution of viscous SOA particles, where CIs may be a previously underestimated source of reactive species.


Assuntos
Ozônio , Compostos Orgânicos Voláteis , Aerossóis/química , Alcenos , Carbono , Ozônio/química , Sesquiterpenos Policíclicos , Compostos Orgânicos Voláteis/química
8.
Environ Sci Process Impacts ; 24(6): 884-897, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35611976

RESUMO

Metals are an important atmospheric aerosol component; their impacts on health and the environment depend also on their solubility, dissolution kinetics and chemical form in which they are present in the aerosol (e.g., oxidation state, inorganic salt or oxide/hydroxide, organic complex). In this study, we investigated the impact of fog processing on the solubility and dissolution of metals in PM2.5 samples collected in an urban background site in Padova (Italy). For each sample, we determined the solubility and dissolution kinetics of 17 elements in a solution simulating fog water in the winter season in the Po Valley (pH 4.7, T 5 °C, and water content ∼0.5 g m-3). We also determined water-soluble inorganic and organic compounds having ligand properties. We used the model E-AIM IV to calculate the aerosol liquid water (ALW) content and pH, and we used the model Visual MinteQ to determine the speciation picture of the most important elements under conditions of both deliquescent aerosol (ALW and pH calculated using E-AIM IV, ambient temperature) and simulated fog. We found that the dissolution of Al, Cu, and Fe metal ions, predicted to be largely coordinated with organic compounds under fog conditions, was either immediate or considerably faster in samples collected on days with observed fog events compared with those collected on days having drier conditions. For readily soluble elements, such as As, Cd, Cr, Sr, and Zn, such an effect was not observed. Our study highlights the importance of coordination chemistry in atmospheric aerosol and fog in determining the bioavailability of particle-bound metals.


Assuntos
Poluentes Atmosféricos , Metais , Aerossóis/química , Poluentes Atmosféricos/análise , Cinética , Metais/análise , Compostos Orgânicos/química , Solubilidade , Água/análise
10.
Environ Sci Pollut Res Int ; 28(10): 11716-11748, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29105037

RESUMO

With the exponential number of published data on neonicotinoids and fipronil during the last decade, an updated review of literature has been conducted in three parts. The present part focuses on gaps of knowledge that have been addressed after publication of the Worldwide Integrated Assessment (WIA) on systemic insecticides in 2015. More specifically, new data on the mode of action and metabolism of neonicotinoids and fipronil, and their toxicity to invertebrates and vertebrates, were obtained. We included the newly detected synergistic effects and/or interactions of these systemic insecticides with other insecticides, fungicides, herbicides, adjuvants, honeybee viruses, and parasites of honeybees. New studies have also investigated the contamination of all environmental compartments (air and dust, soil, water, sediments, and plants) as well as bees and apicultural products, food and beverages, and the exposure of invertebrates and vertebrates to such contaminants. Finally, we review new publications on remediation of neonicotinoids and fipronil, especially in water systems. Conclusions of the previous WIA in 2015 are reinforced; neonicotinoids and fipronil represent a major threat worldwide for biodiversity, ecosystems, and all the services the latter provide.


Assuntos
Inseticidas , Animais , Abelhas , Ecossistema , Inseticidas/análise , Invertebrados , Neonicotinoides , Solo
11.
Environ Sci Pollut Res Int ; 28(10): 11749-11797, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29124633

RESUMO

New information on the lethal and sublethal effects of neonicotinoids and fipronil on organisms is presented in this review, complementing the previous Worldwide Integrated Assessment (WIA) in 2015. The high toxicity of these systemic insecticides to invertebrates has been confirmed and expanded to include more species and compounds. Most of the recent research has focused on bees and the sublethal and ecological impacts these insecticides have on pollinators. Toxic effects on other invertebrate taxa also covered predatory and parasitoid natural enemies and aquatic arthropods. Little new information has been gathered on soil organisms. The impact on marine and coastal ecosystems is still largely uncharted. The chronic lethality of neonicotinoids to insects and crustaceans, and the strengthened evidence that these chemicals also impair the immune system and reproduction, highlights the dangers of this particular insecticidal class (neonicotinoids and fipronil), with the potential to greatly decrease populations of arthropods in both terrestrial and aquatic environments. Sublethal effects on fish, reptiles, frogs, birds, and mammals are also reported, showing a better understanding of the mechanisms of toxicity of these insecticides in vertebrates and their deleterious impacts on growth, reproduction, and neurobehaviour of most of the species tested. This review concludes with a summary of impacts on the ecosystem services and functioning, particularly on pollination, soil biota, and aquatic invertebrate communities, thus reinforcing the previous WIA conclusions (van der Sluijs et al. 2015).


Assuntos
Inseticidas , Animais , Abelhas , Ecossistema , Inseticidas/análise , Inseticidas/toxicidade , Invertebrados , Neonicotinoides , Nitrocompostos , Polinização
12.
Chemosphere ; 241: 125025, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31604190

RESUMO

Metals in atmospheric aerosols play potentially an important role in human health and ocean primary productivity. However, the lack of knowledge about solubility and speciation of metal ions in the particles or after solubilisation in aqueous media (sea or surface waters, cloud or rain droplets, biological fluids) limits our understanding of the underlying physico-chemical processes. In this work, a wide range of metals, their soluble fractions, and inorganic/organic compounds contained in urban particulate matter (PM) from Padua (Italy) were determined. Metal solubility tests have been performed by dissolving the PM in water and in solutions simulating rain droplet composition. The water-soluble fractions of the metal ions and of the organic compounds having ligand properties have been subjected to a multivariate statistical procedure, in order to elucidate associations among the aqueous concentrations of these PM components in simulated rain droplets. In parallel, a multi-dimensional speciation calculation has been performed to identify the stoichiometry and the amount of metal-ligand complexes theoretically expected in aqueous solutions. Both approaches showed that the solubility and the aqueous speciation of metal ions were differently affected by the presence of inorganic and organic ligands in the PM. The solubility of Al, Cr, and Fe was strongly correlated to the concentrations of oxalic acid, as their oxalate complexes represented the expected dominant species in aqueous solutions. Oxalates of Al represented ∼98% of soluble Al, while oxalates of Cu represented 34-75% of the soluble Cu, and oxalates of Fe represented 76% of soluble Fe. The oxidation state of Fe can strongly impact the speciation picture. If Fe is present as Fe(II) rather than Fe(III), the amount of Cr and Cu complexed with diacids can increase from 75% to 94%, and from 32% to 53%, respectively. For other metals, the solubility depended on the formation of soluble aquo-complexes, hence with a scarce effect of the organic ligands. An iron-oxalate complex was also directly detected in aerosol sample extracts.


Assuntos
Complexos de Coordenação/química , Metais/química , Ácido Oxálico/química , Material Particulado/análise , Aerossóis/análise , Humanos , Itália , Ligantes , Oxirredução , Solubilidade , Reforma Urbana , Água
13.
Anal Chem ; 91(13): 8326-8333, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31125203

RESUMO

The cuticle, the outermost layer covering the epidermis of most aerial organs of land plants, can have a heterogeneous composition even on the surface of the same organ. The main cuticle component is the polymer cutin which, depending on its chemical composition and structure, can have different biophysical properties. In this study, we introduce a new on-surface depolymerization method coupled to liquid extraction surface analysis (LESA) high-resolution mass spectrometry (HRMS) for a fast and spatially resolved chemical characterization of the cuticle of plant tissues. The method is composed of an on-surface saponification, followed by extraction with LESA using a chloroform-acetonitrile-water (49:49:2) mixture and direct HRMS detection. The method is also compared with LESA-HRMS without prior depolymerization for the analysis of the surface of the petals of Hibiscus richardsonii flowers, which have a ridged cuticle in the proximal region and a smooth cuticle in the distal region. We found that on-surface saponification is effective enough to depolymerize the cutin into its monomeric constituents thus allowing detection of compounds that were not otherwise accessible without a depolymerization step. The effect of the depolymerization procedure was more pronounced for the ridged/proximal cuticle, which is thicker and richer in epicuticular waxes compared with the cuticle in the smooth/distal region of the petal.


Assuntos
Espectrometria de Massas/métodos , Lipídeos de Membrana/química , Epiderme Vegetal/química , Flores/química , Hibiscus , Extração Líquido-Líquido , Lipídeos de Membrana/isolamento & purificação , Polimerização
14.
Chemosphere ; 224: 786-795, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30851530

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous atmospheric pollutants of high concern for public health. In the atmosphere they undergo oxidation, mainly through reactions with ·OH and NOx to produce nitro- and oxygenated (oxy-) derivatives. In this study, we developed a new method for the detection of particle-bound PAHs, nitro-PAHs and oxy-PAHs using direct infusion into an atmospheric pressure photoionisation high-resolution mass spectrometer (APPI-HRMS). Method optimisation was done by testing different source temperatures, gas flow rates, mobile phases and dopants. Samples were extracted with methanol, concentrated by evaporation and directly infused in the APPI source after adding toluene as dopant. Acquisition was performed in both polarity modes. The method was applied to target analysis of seasonal PM2.5 samples from an urban background site in Padua (Italy), in the Po Valley, in which a series of PAHs, nitro- and oxy-PAHs were detected. APPI-HRMS was then used for non-target analysis of seasonal PM2.5 samples and results compared with nano-electrospray ionisation (nanoESI) HRMS. The results showed that, when samples were characterised by highly oxidised organic compounds, including S-containing compounds, like in summer samples, APPI did not bring any additional information with respect to nanoESI in negative polarity (nanoESI(-)). Conversely, for winter samples, APPI(-) could detect a series of aromatic and poly-aromatic compounds, mainly oxidised and nitrogenated aromatics, that were not otherwise detected with nanoESI.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Espectrometria de Massas/métodos , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Atmosfera/análise , Pressão Atmosférica , Itália
15.
Anal Chem ; 91(8): 5051-5057, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30893554

RESUMO

Many atmospheric organic compounds are long-lived enough to be transported from their sources to polar regions and high mountain environments where they can be trapped in ice archives. While inorganic components in ice archives have been studied extensively to identify past climate changes, organic compounds have rarely been used to assess paleo-environmental changes, mainly due to the lack of suitable analytical methods. This study presents a new method of direct injection high performance liquid chromatography-mass spectrometry (HPLC-MS) analysis, without the need of preconcentrating the melted ice, for the determination of a series of novel biomarkers in ice core samples indicative of primary and secondary terrestrial and marine organic aerosol sources. Eliminating a preconcentration step reduces contamination potential and decreases the required sample volume thus allowing a higher time resolution in the archives. The method is characterized by limits of detection (LODs) in the range of 0.01-15 ppb, depending on the analyte, and accuracy evaluated through an interlaboratory comparison. We find that many components in secondary organic aerosols (SOAs) are clearly detectable at concentrations comparable to those previously observed in replicate preconcentrated ice samples from the Belukha glacier, Russian Altai Mountains. Some compounds with low recoveries in the preconcentration steps are now detectable in samples with this new direct injection method significantly increasing the range of environmental processes and sources that become accessible for paleo-climate studies.


Assuntos
Biomarcadores/análise , Cromatografia Líquida de Alta Pressão/métodos , Monitoramento Ambiental/métodos , Gelo , Limite de Detecção , Espectrometria de Massas/métodos , Oceanos e Mares
16.
Talanta ; 194: 233-242, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30609525

RESUMO

The majority of atmospheric compounds measured in ice cores are inorganic, while analysis of their organic counterparts is a less well developed field. In recent years, understanding of formation, transport pathways and preservation of these compounds in ice and snow has improved, showing great potential for their use as biomarkers in ice cores. This study presents an optimised analytical technique for quantification of terrestrial and marine biosphere emissions of secondary organic aerosol (SOA) components and fatty acids in ice using HPLC-MS analysis. Concentrations of organic compounds in snow and ice are extremely low (typically ppb or ppt levels) and thus pre-concentration is required prior to analysis. Stir bar sorptive extraction (SBSE) showed potential for fatty acid compounds, but failed to recover SOA compounds. Solid phase extraction (SPE) recovered compounds across both organic groups but methods improving some recoveries came at the expense of others, and background contamination of fatty acids was high. Rotary evaporation was by far the best performing method across both SOA and fatty acid compounds, with average recoveries of 80%. The optimised preconcentration - HPLC-MS method achieved repeatability of 9% averaged for all compounds. In environmental samples, both concentrations and seasonal trends were observed to be reproducible when analysed in two different laboratories using the same method.


Assuntos
Aerossóis/análise , Organismos Aquáticos/química , Cromatografia Líquida/métodos , Ácidos Graxos/análise , Gelo , Espectrometria de Massas em Tandem/métodos , Aerossóis/isolamento & purificação , Biomarcadores/análise , Calibragem , Ácidos Graxos/isolamento & purificação , Reprodutibilidade dos Testes , Extração em Fase Sólida , Volatilização
17.
Environ Sci Technol ; 51(24): 14107-14113, 2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-29148736

RESUMO

Hydrogen cyanide is a ubiquitous gas in the atmosphere and a biomass burning tracer. Reactive gases can be adsorbed onto aerosol particles where they can promote heterogeneous chemistry. In the present study, we report for the first time on the measurement and speciation of cyanides in atmospheric aerosol. Filter samples were collected at an urban background site in the city center of Padua (Italy), extracted and analyzed with headspace gas chromatography and nitrogen-phosphorus detection. The results showed that strongly bound cyanides were present in all aerosol samples at a concentration ranging between 0.3 and 6.5 ng/m3 in the PM2.5 fraction. The concentration of cyanides strongly correlates with concentration of total carbon and metals associated with combustion sources. The results obtained bring evidence that hydrogen cyanide can be adsorbed onto aerosol liquid water and can react with metal ions to form stable metal-cyanide complexes.


Assuntos
Complexos de Coordenação , Cianetos , Aerossóis , Poluentes Atmosféricos , Cidades , Itália
18.
J Phys Chem A ; 121(40): 7641-7654, 2017 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-28902512

RESUMO

Aerosol-cloud interaction contributes to the largest uncertainties in the estimation and interpretation of the Earth's changing energy budget. The present study explores experimentally the impacts of water condensation-evaporation events, mimicking processes occurring in atmospheric clouds, on the molecular composition of secondary organic aerosol (SOA) from the photooxidation of methacrolein. A range of on- and off-line mass spectrometry techniques were used to obtain a detailed chemical characterization of SOA formed in control experiments in dry conditions, in triphasic experiments simulating gas-particle-cloud droplet interactions (starting from dry conditions and from 60% relative humidity (RH)), and in bulk aqueous-phase experiments. We observed that cloud events trigger fast SOA formation accompanied by evaporative losses. These evaporative losses decreased SOA concentration in the simulation chamber by 25-32% upon RH increase, while aqueous SOA was found to be metastable and slowly evaporated after cloud dissipation. In the simulation chamber, SOA composition measured with a high-resolution time-of-flight aerosol mass spectrometer, did not change during cloud events compared with high RH conditions (RH > 80%). In all experiments, off-line mass spectrometry techniques emphasize the critical role of 2-methylglyceric acid as a major product of isoprene chemistry, as an important contributor to the total SOA mass (15-20%) and as a key building block of oligomers found in the particulate phase. Interestingly, the comparison between the series of oligomers obtained from experiments performed under different conditions show a markedly different reactivity. In particular, long reaction times at high RH seem to create the conditions for aqueous-phase processing to occur in a more efficient manner than during two relatively short cloud events.

19.
Faraday Discuss ; 200: 559-578, 2017 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-28580994

RESUMO

Ozonolysis of alkenes is a key reaction in the atmosphere, playing an important role in determining the oxidising capacity of the atmosphere and acting as a source of compounds that can contribute to local photochemical "smog". The reaction products of the initial step of alkene-ozonolysis are Criegee intermediates (CIs), which have for many decades eluded direct experimental detection because of their very short lifetime. We use an innovative experimental technique, stabilisation of CIs with spin traps and analysis with proton transfer reaction mass spectrometry, to measure the gas phase concentration of a series of CIs formed from the ozonolysis of a range of both biogenic and anthropogenic alkenes in flow tube experiments. Density functional theory (DFT) calculations were used to assess the stability of the CI-spin trap adducts and show that the reaction of the investigated CIs with the spin trap occurs very rapidly except for the large ß-pinene CI. Our measurement method was used successfully to measure all the expected CIs, emphasising that this new technique is applicable to a wide range of CIs with different molecular structures that were previously unidentified experimentally. In addition, for the first time it was possible to study CIs simultaneously in an even more complex reaction system consisting of more than one olefinic precursor. Comparison between our new experimental measurements, calculations of stability of the CI-spin trap adducts and results from numerical modelling, using the master chemical mechanism (MCM), shows that our new method can be used for the quantification of CIs produced in situ in laboratory experiments.

20.
J Am Chem Soc ; 139(11): 3999-4008, 2017 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-28201872

RESUMO

Biogenic alkenes, which are among the most abundant volatile organic compounds in the atmosphere, are readily oxidized by ozone. Characterizing the reactivity and kinetics of the first-generation products of these reactions, carbonyl oxides (often named Criegee intermediates), is essential in defining the oxidation pathways of organic compounds in the atmosphere but is highly challenging due to the short lifetime of these zwitterions. Here, we report the development of a novel online method to quantify atmospherically relevant Criegee intermediates (CIs) in the gas phase by stabilization with spin traps and analysis with proton-transfer reaction mass spectrometry. Ozonolysis of α-pinene has been chosen as a proof-of-principle model system. To determine unambiguously the structure of the spin trap adducts with α-pinene CIs, the reaction was tested in solution, and reaction products were characterized with high-resolution mass spectrometry, electron paramagnetic resonance, and nuclear magnetic resonance spectroscopy. DFT calculations show that addition of the Criegee intermediate to the DMPO spin trap, leading to the formation of a six-membered ring adduct, occurs through a very favorable pathway and that the product is significantly more stable than the reactants, supporting the experimental characterization. A flow tube set up has been used to generate spin trap adducts with α-pinene CIs in the gas phase. We demonstrate that spin trap adducts with α-pinene CIs also form in the gas phase and that they are stable enough to be detected with online mass spectrometry. This new technique offers for the first time a method to characterize highly reactive and atmospherically relevant radical intermediates in situ.


Assuntos
Alcenos/análise , Sistemas On-Line , Óxidos/análise , Ozônio/química , Prótons , Atmosfera/química , Cinética , Espectrometria de Massas , Teoria Quântica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...