Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 29(49): e202301517, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37204268

RESUMO

Sub-nanometer metal clusters have special physical and chemical properties, significantly different from those of nanoparticles. However, there is a major concern about their thermal stability and susceptibility to oxidation. In situ X-ray Absorption spectroscopy and Near Ambient Pressure X-ray Photoelectron spectroscopy results reveal that supported Cu5 clusters are resistant to irreversible oxidation at least up to 773 K, even in the presence of 0.15 mbar of oxygen. These experimental findings can be formally described by a theoretical model which combines dispersion-corrected DFT and first principles thermochemistry revealing that most of the adsorbed O2 molecules are transformed into superoxo and peroxo species by an interplay of collective charge transfer within the network of Cu atoms and large amplitude "breathing" motions. A chemical phase diagram for Cu oxidation states of the Cu5 -oxygen system is presented, clearly different from the already known bulk and nano-structured chemistry of Cu.

2.
Langmuir ; 36(46): 13998-14008, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33170718

RESUMO

The photothermal response of mercaptoundecanoic acid (MUA)-coated Ag nanoparticles (Ag@MUA NPs) in both aqueous dispersions and paper substrates was determined as a function of pH when irradiated with a green laser or a blue LED source. Aqueous dispersions of Ag@MUA NPs showed an aggregation behavior by acidification that was used for the formation of NPs clusters of variable sizes. Aggregation was induced by changing the pH across the apparent pKa of the acid, higher than the pKa of the free acid. Formation of these aggregates was completely reversible allowing the return to the well-dispersed initial state by simply increasing the pH by the addition of a base. Aggregation produced a shift of the plasmon band that changed the spectra of the dispersions and their ability to be remotely heated when irradiated with visible light. These aggregates could be transferred to paper by simple impregnation of the substrates with the dispersion. On the solid substrate, a higher photothermal response than in the liquid medium was observed. A high local increase of up to 75 °C could be recorded on paper after only 30 s of irradiation with a green laser, whereas a blue LED array was enough for inducing the melting of a solid paraffin (Tm = 36-38 °C) deposited on it. This work demonstrates that photothermal heating can be controlled by the reversible aggregation of NPs to induce different thermal responses in liquid and solid media.

3.
J Mater Chem A Mater ; 7(13): 7489-7500, 2019 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-31007927

RESUMO

The decoration of semiconductors with subnanometer-sized clusters of metal atoms can have a strong impact on the optical properties of the support. The changes induced differ greatly from effects known for their well-studied, metallic counterparts in the nanometer range. In this work, we study the deposition of Cu5 clusters on a TiO2 surface and investigate their influence on the photon-absorption properties of TiO2 nanoparticles via the computational modeling of a decorated rutile TiO2 (110) surface. Our findings are further supported by selected experiments using diffuse reflectance and X-ray absorption spectroscopy. The Cu5 cluster donates an electron to TiO2, leading to the formation of a small polaron Ti3+ 3d1 state and depopulation of Cu(3d) orbitals, successfully explaining the absorption spectroscopy measurements at the K-edge of copper. A monolayer of highly stable and well fixated Cu5 clusters is formed, which not only enhances the overall absorption, but also extends the absorption profile into the visible region of the solar spectrum via direct photo-induced electron transfer and formation of a charge-separated state.

4.
Nanoscale ; 10(14): 6382-6392, 2018 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-29561055

RESUMO

We combined synchrotron small angle X-ray scattering, X-ray fluorescence and extended X-ray absorption fine structure spectroscopy to probe the structure of chemically synthesized CoPt3 nanoparticles (NPs) after ligand removal via the commonly accepted solvent/nonsolvent approach. We showed that the improved catalytic activity of extensively purified NPs could not be explained only in terms of a "cleaner" surface. We found that extensive surface purification results in the substantial leaching of the Co atoms from the chemically synthesized CoPt3 NPs transforming them into CoPt3/Pt core/shell structures with an unexpectedly thick (∼0.5 nm) Pt shell. We indicated that the improved catalytic activity of extensively purified NPs in octyne hydrogenation reaction can be explained by the formation of CoPt3/Pt core/shell structures. Also, we demonstrated that drastic compositional and structural transformation of water transferred CoPt3 NPs was rather a result of extensive removal of native ligands via a solvent/nonsolvent approach than leaching of cobalt atoms in aqueous media. We expect that these findings can be relevant to other transition metal based multicomponent NPs.

5.
Nano Lett ; 16(6): 3738-47, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27152970

RESUMO

Doping is a well-known approach to modulate the electronic and optical properties of nanoparticles (NPs). However, doping at nanoscale is still very challenging, and the reasons for that are not well understood. We studied the formation and doping process of iron and iron oxide NPs in real time by in situ synchrotron X-ray absorption spectroscopy. Our study revealed that the mass flow of the iron triggered by oxidation is responsible for the internalization of the dopant (molybdenum) adsorbed at the surface of the host iron NPs. The oxidation induced doping allows controlling the doping levels by varying the amount of dopant precursor. Our in situ studies also revealed that the dopant precursor substantially changes the reaction kinetics of formation of iron and iron oxide NPs. Thus, in the presence of dopant precursor we observed significantly faster decomposition rate of iron precursors and substantially higher stability of iron NPs against oxidation. The same doping mechanism and higher stability of host metal NPs against oxidation was observed for cobalt-based systems. Since the internalization of the adsorbed dopant at the surface of the host NPs is driven by the mass transport of the host, this mechanism can be potentially applied to introduce dopants into different oxidized forms of metal and metal alloy NPs providing the extra degree of compositional control in material design.

6.
Nanoscale ; 7(26): 11273-9, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26068070

RESUMO

Anisotropic gold nanostructures prepared by the seed method in the presence of Ag ions have been used to study their photostability to low-power UV irradiation (254 nm) at room temperature. It has been observed that, whereas spheres are very stable to photoirradiation, rods and prisms suffer from photocorrosion and finally dissolve completely with the production of Au(III) ions. Interpretation of these differences is based on the presence of semiconductor-like Ag clusters, adsorbed onto rods and prisms, able to photocorrode the Au nanoparticles, which are absent in the case of Au spheres. We further show direct evidence of the presence of Ag clusters in Au nanorods by XANES. These results confirm a previous hypothesis (J. Am. Chem. Soc., 2014, 136, 1182-1185) about the major influence of very stable small Ag clusters, not only on the anisotropic formation of nanostructures but also on their photostability.

7.
Angew Chem Int Ed Engl ; 54(26): 7612-6, 2015 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-25968160

RESUMO

Subnanometric samples, containing exclusively Ag2 and Ag3 clusters, were synthesized for the first time by kinetic control using an electrochemical technique without the use of surfactants or capping agents. By combination of thermodynamic and kinetic measurements and theoretical calculations, we show herein that Ag3 clusters interact with DNA through intercalation, inducing significant structural distortion to the DNA. The lifetime of Ag3 clusters in the intercalated position is two to three orders of magnitude longer than for classical organic intercalators, such as ethidium bromide or proflavine.


Assuntos
Eletroquímica/métodos , Prata/química , DNA/química
8.
J Colloid Interface Sci ; 441: 17-24, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25485807

RESUMO

We report a synthetic approach for the production of ultra-small (0.6 nm) gold nanoparticles soluble in water with a precise control of the nanoparticle size. Our synthetic approach utilizes a pH-depending Au-cysteine polymer as a quencher for the AuNPs grown. The method extends the synthetic capabilities of nanoparticles with sizes down to 1 nm. In addition to the strict pH control, the existence of free -SH groups present in the mixture of reaction has been observed as a key requirement for the synthesis of small nanoparticles in mild conditions. UV-Vis, SAXS, XANES, EXAFS and HR-TEM, has been used to determinate the particle size, characterization of the gold precursor and gold-cysteine interaction.


Assuntos
Cisteína/química , Ouro/química , Nanopartículas Metálicas/química , Polímeros/química , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Transmissão , Tamanho da Partícula
9.
J Am Chem Soc ; 134(9): 4384-92, 2012 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-22332976

RESUMO

We propose a general nucleation and growth model that can explain the mechanism of the formation of CoPt(3)/Au, FePt/Au, and Pt/Au nanodumbbells. Thus, we found that the nucleation event occurs as a result of reduction of Au(+) ions by partially oxidized surface Pt atoms. In cases when Au(3+) is used as a gold precursor, the surface of seeds should be terminated by ions (e.g., Co(2+), Pb(2+)) that can reduce Au(3+) to Au(+) ions, which can further participate in the nucleation of gold domain. Further growth of gold domain is a result of reduction of both Au(3+) and Au(+) by HDA at the surface of gold nuclei. We explain the different ability of CoPt(3), Pt, and FePt seeds to serve as a nucleation center for the reduction of gold and further growth of dumbbells. We report that the efficiency and reproducibility of the formation of CoPt(3)/Au, FePt/Au, and Pt/Au dumbbells can be optimized by the concentration and oxidation states of the surface ions on metallic nanocrystals used as seeds as well as by the type of the gold precursor.

10.
Small ; 8(3): 468-73, 2012 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-22213635

RESUMO

Polyvinylpyrollidone (PVP)-capped platinum nanoparticles (NPs) are found to change shape from spherical to flat when deposited on mesoporous silica substrates (SBA-15). Transmission electron microscopy (TEM), small-angle X-ray scattering (SAXS), and extended X-ray absorption fine structure (EXAFS) analyses are used in these studies. The SAXS results indicate that, after deposition, the 2 nm NPs have an average gyration radius 22% larger than in solution, while the EXAFS measurements indicate a decrease in first neighbor co-ordination number from 9.3 to 7.4. The deformation of these small capped NPs is attributed to interactions with the surface of the SBA-15 support, as evidenced by X-ray absorption near-edge structure (XANES).

11.
ACS Nano ; 4(6): 3413-21, 2010 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-20459111

RESUMO

In this paper, the synthesis of gold at gold(I)-thiolate core at shell nanoparticles is described for the first time. The chemical nature and structure of these nanoparticles were characterized by a multi-technique approach. The prepared particles consist of gold metallic cores, about 1 nm in size, surrounded by stable gold(I)-thiomalate shells (Au at Au(I)-TM). These nanoparticles could be useful in medicine due to the interesting properties that gold(I)-thiomalate has against rheumatoid arthritis. Furthermore, the described results give new insights in the synthesis and characterization of metallic and core at shell nanoparticles.


Assuntos
Cristalização/métodos , Tiomalato Sódico de Ouro/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...