Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-498624

RESUMO

Patients with severe COVID-19 develop acute respiratory distress syndrome (ARDS) that may progress to cytokine storm syndrome, organ dysfunction, and death. Considering that complement component 5a (C5a), through its cellular receptor C5aR1, has potent proinflammatory actions, and plays immunopathological roles in inflammatory diseases, we investigated whether C5a/C5aR1 pathway could be involved in COVID-19 pathophysiology. C5a/C5aR1 signaling increased locally in the lung, especially in neutrophils of critically ill COVID-19 patients compared to patients with influenza infection, as well as in the lung tissue of K18-hACE2 Tg mice (Tg mice) infected with SARS-CoV-2. Genetic and pharmacological inhibition of C5aR1 signaling ameliorated lung immunopathology in Tg-infected mice. Mechanistically, we found that C5aR1 signaling drives neutrophil extracellular trap (NET)s-dependent immunopathology. These data confirm the immunopathological role of C5a/C5aR1 signaling in COVID-19 and indicate that antagonist of C5aR1 could be useful for COVID-19 treatment.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22277067

RESUMO

Infection with SARS-CoV-2 induces COVID-19, an inflammatory disease that is usually self-limited, but depending on patient conditions may culminate with critical illness and patient death. The virus triggers activation of intracellular sensors, such as the NLRP3 inflammasome, which promotes inflammation and aggravates the disease. Thus, identification of host components associated with NLRP3 inflammasome is key for understanding the physiopathology of the disease. Here, we reported that SARS-CoV-2 induces upregulation and activation of human Caspase-4/CASP4 (mouse Caspase-11/CASP11) and this process contributes to inflammasome activation in response to SARS-CoV-2. CASP4 was expressed in lung autopsy of lethal cases of COVID-19 and CASP4 expression correlates with expression of inflammasome components and inflammatory mediators such as CASP1, IL1B, IL18 and IL6. In vivo infections performed in transgenic hACE2 humanized mouse, deficient or sufficient for Casp11, indicate that hACE2 Casp11-/- mice were protected from disease development, with reduced body weight loss, reduced temperature variation, increased pulmonary parenchymal area, reduced clinical score of the disease and reduced mortality. Collectively, our data establishes that CASP4/11 contributes to disease pathology and contributes for future immunomodulatory therapeutic interventions to COVID-19.

3.
Glycoconj J ; 33(1): 79-91, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26586247

RESUMO

The primary goal of this study was to develop a method to study the N-glycosylation of IgG from swine in order to detect epitopes containing N-glycolylneuraminic acid (Neu5Gc) and/or terminal galactose residues linked in α1-3 susceptible to cause xenograft-related problems. Samples of immunoglobulin were isolated from porcine serum using protein-A affinity chromatography. The eluate was then separated on electrophoretic gel, and bands corresponding to the N-glycosylated heavy chains were cut off the gel and subjected to tryptic digestion. Peptides and glycopeptides were separated by reversed phase liquid chromatography and fractions were collected for matrix-assisted laser desorption/ionization time-of-flight mass spectrometric (MALDI-TOF-MS) analysis. Overall no α1-3 galactose was detected, as demonstrated by complete susceptibility of terminal galactose residues to ß-galactosidase digestion. Neu5Gc was detected on singly sialylated structures. Two major N-glycopeptides were found, EEQFNSTYR and EAQFNSTYR as determined by tandem MS (MS/MS), as previously reported by Butler et al. (Immunogenetics, 61, 2009, 209-230), who found 11 subclasses for porcine IgG. Out of the 11, ten include the sequence corresponding to EEQFNSTYR, and only one codes for EAQFNSTYR. In this study, glycosylation patterns associated with both chains were slightly different, in that EEQFNSTYR had a higher content of galactose. The last step of this study consisted of peptide-mapping the 11 reported porcine IgG sequences. Although there was considerable overlap, at least one unique tryptic peptide was found per IgG sequence. The workflow presented in this manuscript constitutes the first study to use MALDI-TOF-MS in the investigation of porcine IgG structural features.


Assuntos
Imunoglobulina G/química , Processamento de Proteína Pós-Traducional , Sequência de Aminoácidos , Animais , Glicosilação , Imunoglobulina G/metabolismo , Dados de Sequência Molecular , Ácidos Neuramínicos/química , Ácidos Neuramínicos/metabolismo , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...