Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Clin Chem ; 68(5): 691-701, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35304611

RESUMO

BACKGROUND: The isolation of circulating tumor cells (CTCs) requires rapid processing of the collected blood due to their inherent fragility. The ability to recover CTCs from peripheral blood mononuclear cells (PBMCs) preserved from cancer patients could allow for retrospective analyses or multicenter CTC studies. METHODS: We compared the efficacy of CTC recovery and characterization using cryopreserved PMBCs vs fresh whole blood from patients with non-small cell lung cancer (NSCLC; n = 8) and sarcoma (n = 6). Two epithelial cellular adhesion molecule (EpCAM)-independent strategies for CTC enrichment, based on Parsortix® technology or immunomagnetic depletion of blood cells (AutoMACS®) were tested, followed by DEPArray™ single-cell isolation. Phenotype and genotype, assessed by copy number alterations analysis, were evaluated at a single-cell level. Detection of target mutations in CTC-enriched samples from frozen NSCLC PBMCs was also evaluated by digital PCR (dPCR). RESULTS: The use of cryopreserved PBMCs from cancer patients allowed for the retrospective enumeration of CTCs and their molecular characterization, using both EpCAM-independent strategies that performed equally in capturing CTC. Cells isolated from frozen PBMCs were representative of whole blood-derived CTCs in terms of number, phenotype, and copy number aberration profile/target mutations. Long-term storage (≥3 years) did not affect the efficacy of CTC recovery. Detection of target mutations was also feasible by dPCR in CTC-enriched samples derived from stored PBMCs. CONCLUSIONS: Isolating CTCs from longitudinally collected PBMCs using an unbiased selection strategy can offer a wider range of retrospective genomic/phenotypic analyses to guide patients' personalized therapy, paving the way for sample sharing in multicenter studies.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Células Neoplásicas Circulantes , Sarcoma , Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Molécula de Adesão da Célula Epitelial/genética , Humanos , Leucócitos Mononucleares/metabolismo , Neoplasias Pulmonares/patologia , Células Neoplásicas Circulantes/patologia , Estudos Retrospectivos
2.
Mol Ther ; 29(10): 2963-2978, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34023505

RESUMO

Platinum-based chemotherapy remains widely used in advanced non-small cell lung cancer (NSCLC) despite experimental evidence of its potential to induce long-term detrimental effects, including the promotion of pro-metastatic microenvironments. In this study, we investigated the interconnected pathways underlying the promotion of cisplatin-induced metastases. In tumor-free mice, cisplatin treatment resulted in an expansion in the bone marrow of CCR2+CXCR4+Ly6Chigh inflammatory monocytes (IMs) and an increase in lung levels of stromal SDF-1, the CXCR4 ligand. In experimental lung metastasis assays, cisplatin-induced IMs promoted the extravasation of tumor cells and the expansion of CD133+CXCR4+ metastasis-initiating cells (MICs). Peptide R, a novel CXCR4 inhibitor designed as an SDF-1 mimetic peptide, prevented cisplatin-induced IM expansion, the recruitment of IMs into the lungs, and the promotion of metastasis. At the primary tumor site, cisplatin treatment reduced tumor size while simultaneously inducing tumor release of SDF-1, MIC expansion, and recruitment of pro-invasive CXCR4+ macrophages. Co-recruitment of MICs and CCR2+CXCR4+ IMs to distant SDF-1-enriched sites also promoted spontaneous metastases that were prevented by CXCR4 blockade. In clinical specimens from NSCLC patients SDF-1 levels were found to be higher in platinum-treated samples and related to a worse clinical outcome. Our findings reveal that activation of the CXCR4/SDF-1 axis specifically mediates the pro-metastatic effects of cisplatin and suggest CXCR4 blockade as a possible novel combination strategy to control metastatic disease.


Assuntos
Antígeno AC133/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Quimiocina CXCL12/metabolismo , Cisplatino/administração & dosagem , Neoplasias Pulmonares/tratamento farmacológico , Monócitos/metabolismo , Peptídeos/administração & dosagem , Receptores CXCR4/metabolismo , Células A549 , Animais , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Cisplatino/farmacologia , Interações Medicamentosas , Humanos , Neoplasias Pulmonares/imunologia , Masculino , Camundongos , Metástase Neoplásica , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/imunologia , Peptídeos/farmacologia , Células RAW 264.7 , Receptores CXCR4/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Front Immunol ; 11: 02168, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33123122

RESUMO

Cancer stem cells (CSCs) are functionally defined as the cell subset with greater potential to initiate and propagate tumors. Within the heterogeneous population of lung CSCs, we previously identified highly disseminating CD133+CXCR4+ cells able to initiate distant metastasis (metastasis initiating cells-MICs) and to resist conventional chemotherapy. The establishment of an immunosuppressive microenvironment by tumor cells is crucial to sustain and foster metastasis formation, and CSCs deeply interfere with immune responses against tumors. How lung MICs can elude and educate immune cells surveillance to efficiently complete the metastasis cascade is, however, currently unknown. We show here in primary tumors from non-small cell lung cancer (NSCLC) patients that MICs express higher levels of immunoregulatory molecules compared to tumor bulk, namely PD-L1 and CD73, an ectoenzyme that catalyzes the production of immunosuppressive adenosine, suggesting an enhanced ability of MICs to escape immune responses. To investigate in vitro the immunosuppressive ability of MICs, we derived lung spheroids from cultures of adherent lung cancer cell lines, showing enrichment in CD133+CXCR4+MICs, and increased expression of CD73 and CD38, an enzyme that also concurs in adenosine production. MICs-enriched spheroids release high levels of adenosine and express the immunosuppressive cytokine IL-10, undetectable in an adherent cell counterpart. To prevent dissemination of MICs, we tested peptide R, a novel CXCR4 inhibitor that effectively controls in vitro lung tumor cell migration/invasion. Notably, we observed a decreased expression of CD73, CD38, and IL-10 following CXCR4 inhibition. We also functionally proved that conditioned medium from MICs-enriched spheroids compared to adherent cells has an enhanced ability to suppress CD8+ T cell activity, increase Treg population, and induce the polarization of tumor-associated macrophages (TAMs), which participate in suppression of T cells. Treatment of spheroids with anti-CXCR4 rescued T cell cytotoxic activity and prevented TAM polarization, likely by causing the decrease of adenosine and IL-10 production. Overall, we provide evidence that the subset of lung MICs shows high potential to escape immune control and that inhibition of CXCR4 can impair both MICs dissemination and their immunosuppressive activity, therefore potentially providing a novel therapeutic target in combination therapies to improve efficacy of NSCLC treatment.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Neoplasias Pulmonares/imunologia , Células-Tronco Neoplásicas/fisiologia , Receptores CXCR4/antagonistas & inibidores , Linfócitos T Reguladores/imunologia , Macrófagos Associados a Tumor/imunologia , 5'-Nucleotidase/genética , 5'-Nucleotidase/metabolismo , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Movimento Celular , Regulação Neoplásica da Expressão Gênica , Humanos , Tolerância Imunológica , Metástase Neoplásica , Células Tumorais Cultivadas , Evasão Tumoral , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA