Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gut ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38697771

RESUMO

OBJECTIVE: Achieving HBV cure will require novel combination therapies of direct-acting antivirals and immunomodulatory agents. In this context, the toll-like receptor 8 (TLR8) agonist selgantolimod (SLGN) has been investigated in preclinical models and clinical trials for chronic hepatitis B (CHB). However, little is known regarding its action on immune effectors within the liver. Our aim was to characterise the transcriptomic changes and intercellular communication events induced by SLGN in the hepatic microenvironment. DESIGN: We identified TLR8-expressing cell types in the human liver using publicly available single-cell RNA-seq data and established a method to isolate Kupffer cells (KCs). We characterised transcriptomic and cytokine KC profiles in response to SLGN. SLGN's indirect effect was evaluated by RNA-seq in hepatocytes treated with SLGN-conditioned media (CM) and quantification of HBV parameters following infection. Pathways mediating SLGN's effect were validated using transcriptomic data from HBV-infected patients. RESULTS: Hepatic TLR8 expression takes place in the myeloid compartment. SLGN treatment of KCs upregulated monocyte markers (eg, S100A12) and downregulated genes associated with the KC identity (eg, SPIC). Treatment of hepatocytes with SLGN-CM downregulated NTCP and impaired HBV entry. Cotreatment with an interleukin 6-neutralising antibody reverted the HBV entry inhibition. CONCLUSION: Our transcriptomic characterisation of SLGN sheds light into the programmes regulating KC activation. Furthermore, in addition to its previously described effect on established HBV infection and adaptive immunity, we show that SLGN impairs HBV entry. Altogether, SLGN may contribute through KCs to remodelling the intrahepatic immune microenvironment and may thus represent an important component of future combinations to cure HBV infection.

2.
J Hepatol ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38782119

RESUMO

BACKGROUND & AIMS: Transcription termination fine tunes gene expression and contributes to specify the function of RNAs in eukaryotic cells. Transcription termination of hepatitis B virus (HBV) is subjected to the recognition of the canonical polyadenylation signal (cPAS) common to all viral transcripts. The regulation of the usage of this cPAS and its impact on viral gene expression and replication is currently unknown. APPROACH & RESULTS: To unravel the regulation of HBV transcript termination, we implemented a 3' RACE-PCR assay coupled to single molecule sequencing both in in vitro infected hepatocytes and in chronically infected patients. The detection of a previously unidentified transcriptional readthrough indicated that the cPAS was not systematically recognized during HBV replication in vitro and in vivo. Gene expression downregulation experiments demonstrated a role for the RNA helicases DDX5 and DDX17 in promoting viral transcriptional readthrough, which was, in turn, associated to HBV RNA destabilization and decreased HBx protein expression. RNA and chromatin immunoprecipitation, together with mutation of cPAS sequence, suggested a direct role of DDX5 and DDX17 in functionally linking cPAS recognition to transcriptional readthrough, HBV RNA stability and replication. CONCLUSIONS: Our findings identify DDX5 and DDX17 as crucial determinants for HBV transcriptional fidelity and as host restriction factors for HBV replication. IMPACT AND IMPLICATIONS: Hepatitis B virus (HBV) covalently closed circular (ccc)DNA degradation or functional inactivation remains the holy grail to be attained to achieve HBV cure. Transcriptional fidelity is a cornerstone in gene expression regulation. Here, we demonstrate that two helicases, DDX5 and DDX17, inhibit the recognition of HBV polyadenylation signal and transcriptional termination, thus decreasing HBV RNA stability and acting as restriction factors for efficient cccDNA transcription and viral replication. The observation that DDX5 and DDX17 are downregulated in HBV chronically infected patients suggests a role for the helicases in HBV persistence in vivo. These results open new perspectives for researchers aiming at identifying new targets to neutralise cccDNA transcription.

4.
Viruses ; 16(4)2024 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-38675956

RESUMO

Chronic hepatitis B (CHB) virus infection is a major public health burden and the leading cause of hepatocellular carcinoma. Despite the efficacy of current treatments, hepatitis B virus (HBV) cannot be fully eradicated due to the persistence of its minichromosome, or covalently closed circular DNA (cccDNA). The HBV community is investing large human and financial resources to develop new therapeutic strategies that either silence or ideally degrade cccDNA, to cure HBV completely or functionally. cccDNA transcription is considered to be the key step for HBV replication. Transcription not only influences the levels of viral RNA produced, but also directly impacts their quality, generating multiple variants. Growing evidence advocates for the role of the co-transcriptional regulation of HBV RNAs during CHB and viral replication, paving the way for the development of novel therapies targeting these processes. This review focuses on the mechanisms controlling the different co-transcriptional processes that HBV RNAs undergo, and their contribution to both viral replication and HBV-induced liver pathogenesis.


Assuntos
Regulação Viral da Expressão Gênica , Vírus da Hepatite B , RNA Viral , Replicação Viral , Vírus da Hepatite B/genética , Vírus da Hepatite B/fisiologia , Humanos , RNA Viral/genética , Hepatite B Crônica/virologia , DNA Circular/genética , DNA Circular/metabolismo , Transcrição Gênica , Animais , DNA Viral/genética
5.
Nucleic Acids Res ; 52(5): 2290-2305, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38113270

RESUMO

Phase separation regulates fundamental processes in gene expression and is mediated by the local concentration of proteins and nucleic acids, as well as nucleic acid secondary structures such as G-quadruplexes (G4s). These structures play fundamental roles in both host gene expression and in viral replication due to their peculiar localisation in regulatory sequences. Hepatitis B virus (HBV) covalently closed circular DNA (cccDNA) is an episomal minichromosome whose persistence is at the basis of chronic infection. Identifying the mechanisms controlling its transcriptional activity is indispensable to develop new therapeutic strategies against chronic hepatitis B. The aim of this study was to determine whether G4s are formed in cccDNA and regulate viral replication. Combining biochemistry and functional studies, we demonstrate that cccDNA indeed contains ten G4s structures. Furthermore, mutations disrupting two G4s located in the enhancer I HBV regulatory region altered cccDNA transcription and viral replication. Finally, we showed for the first time that cccDNA undergoes phase separation in a G4-dependent manner to promote its transcription in infected hepatocytes. Altogether, our data give new insight in the transcriptional regulation of the HBV minichromosome that might pave the way for the identification of novel targets to destabilize or silence cccDNA.


Assuntos
Quadruplex G , Hepatite B Crônica , Humanos , Vírus da Hepatite B/genética , DNA Circular/genética , DNA Circular/metabolismo , Separação de Fases , DNA Viral/genética , DNA Viral/metabolismo , Hepatite B Crônica/genética , Hepatite B Crônica/metabolismo , Hepatócitos/metabolismo , Replicação Viral/genética
6.
J Mol Evol ; 91(5): 616-627, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37341745

RESUMO

Hox genes encode Homeodomain-containing transcription factors, which specify segmental identities along the anterior-posterior axis. Functional changes in Hox genes have been directly implicated in the evolution of body plans across the metazoan lineage. The Hox protein Ultrabithorax (Ubx) is expressed and required in developing third thoracic (T3) segments in holometabolous insects studied so far, particularly, of the order Coleoptera, Lepidoptera and Diptera. Ubx function is key to specify differential development of the second (T2) and T3 thoracic segments in these insects. While Ubx is expressed in the third thoracic segment in developing larvae of Hymenopteran Apis mellifera, the morphological differences between T2 and T3 are subtle. To identify evolutionary changes that are behind the differential function of Ubx in Drosophila and Apis, which are diverged for more than 350 million years, we performed comparative analyses of genome wide Ubx-binding sites between these two insects. Our studies reveal that a motif with a TAAAT core is a preferred binding site for Ubx in Drosophila, but not in Apis. Biochemical and transgenic assays suggest that in Drosophila, the TAAAT core sequence in the Ubx binding sites is required for Ubx-mediated regulation of two of its target genes studied here; CG13222, a gene that is normally upregulated by Ubx and vestigial (vg), whose expression is repressed by Ubx in T3. Interestingly, changing the TAAT site to a TAAAT site was sufficient to bring an otherwise unresponsive enhancer of the vg gene from Apis under the control of Ubx in a Drosophila transgenic assay. Taken together, our results suggest an evolutionary mechanism by which critical wing patterning genes might have come under the regulation of Ubx in the Dipteran lineage.

7.
Nucleic Acids Res ; 50(16): 9226-9246, 2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-36039747

RESUMO

DDX5 and DDX17 are DEAD-box RNA helicase paralogs which regulate several aspects of gene expression, especially transcription and splicing, through incompletely understood mechanisms. A transcriptome analysis of DDX5/DDX17-depleted human cells confirmed the large impact of these RNA helicases on splicing and revealed a widespread deregulation of 3' end processing. In silico analyses and experiments in cultured cells showed the binding and functional contribution of the genome organizing factor CTCF to chromatin sites at or near a subset of DDX5/DDX17-dependent exons that are characterized by a high GC content and a high density of RNA Polymerase II. We propose the existence of an RNA helicase-dependent relationship between CTCF and the dynamics of transcription across DNA and/or RNA structured regions, that contributes to the processing of internal and terminal exons. Moreover, local DDX5/DDX17-dependent chromatin loops spatially connect RNA helicase-regulated exons with their cognate promoter, and we provide the first direct evidence that de novo gene looping modifies alternative splicing and polyadenylation. Overall our findings uncover the impact of DDX5/DDX17-dependent chromatin folding on pre-messenger RNA processing.


Assuntos
RNA Helicases DEAD-box , RNA , Humanos , RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Helicases DEAD-box/metabolismo , Processamento Alternativo , Cromatina/genética
8.
Front Cell Dev Biol ; 9: 723859, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34422840

RESUMO

Chromatin domains and loops are important elements of chromatin structure and dynamics, but much remains to be learned about their exact biological role and nature. Topological associated domains and functional loops are key to gene expression and hold the answer to many questions regarding developmental decisions and diseases. Here, we discuss new findings, which have linked chromatin conformation with development, differentiation and diseases and hypothesized on various models while integrating all recent findings on how chromatin architecture affects gene expression during development, evolution and disease.

9.
Front Cell Dev Biol ; 9: 713282, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34368162

RESUMO

Developmental processes have to be robust but also flexible enough to respond to genetic and environmental variations. Different mechanisms have been described to explain the apparent antagonistic nature of developmental robustness and plasticity. Here, we present a "self-sufficient" molecular model to explain the development of a particular flight organ that is under the control of the Hox gene Ultrabithorax (Ubx) in the fruit fly Drosophila melanogaster. Our model is based on a candidate RNAi screen and additional genetic analyses that all converge to an autonomous and cofactor-independent mode of action for Ubx. We postulate that this self-sufficient molecular mechanism is possible due to an unusually high expression level of the Hox protein. We propose that high dosage could constitute a so far poorly investigated molecular strategy for allowing Hox proteins to both innovate and stabilize new forms during evolution.

10.
Nat Commun ; 12(1): 2892, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-34001903

RESUMO

Flying insects have invaded all the aerial space on Earth and this astonishing radiation could not have been possible without a remarkable morphological diversification of their flight appendages. Here, we show that characteristic spatial expression profiles and levels of the Hox genes Antennapedia (Antp) and Ultrabithorax (Ubx) underlie the formation of two different flight organs in the fruit fly Drosophila melanogaster. We further demonstrate that flight appendage morphology is dependent on specific Hox doses. Interestingly, we find that wing morphology from evolutionary distant four-winged insect species is also associated with a differential expression of Antp and Ubx. We propose that variation in the spatial expression profile and dosage of Hox proteins is a major determinant of flight appendage diversification in Drosophila and possibly in other insect species during evolution.


Assuntos
Proteína do Homeodomínio de Antennapedia/genética , Proteínas de Drosophila/genética , Voo Animal , Proteínas de Homeodomínio/genética , Fatores de Transcrição/genética , Animais , Proteína do Homeodomínio de Antennapedia/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Dosagem de Genes , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/metabolismo , Asas de Animais/anatomia & histologia , Asas de Animais/metabolismo
11.
iScience ; 24(3): 102210, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33733070

RESUMO

Transcription factors are key players in a broad range of cellular processes such as cell-fate decision. Understanding how they act to control these processes is of critical importance for therapy purposes. FLI-1 controls several hematopoietic lineage differentiation including megakaryopoiesis and erythropoiesis. Its aberrant expression is often observed in cancer and is associated with poor prognosis. We showed that FLI-1 interacts with the LDB1 complex, which also plays critical roles in erythropoiesis and megakaryopoiesis. In this study, we aimed to unravel how FLI-1 and the LDB1 complex act together in murine erythroleukemia cells and in megakaryocyte. Combining omics techniques, we show that FLI-1 enables the recruitment of the LDB1 complex to regulatory sequences of megakaryocytic genes and to enhancers. We show as well for the first time that FLI-1 is able to modulate the 3D chromatin organization by promoting chromatin looping between enhancers and promoters most likely through the LDB1 complex.

12.
Cell Microbiol ; 23(2): e13274, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33006186

RESUMO

Hepatitis B virus (HBV) infection is of global importance with over 2 billion people exposed to the virus during their lifetime and at risk of progressive liver disease, cirrhosis and hepatocellular carcinoma. HBV is a member of the Hepadnaviridae family that replicates via episomal copies of a covalently closed circular DNA (cccDNA) genome. The chromatinization of this small viral genome, with overlapping open reading frames and regulatory elements, suggests an important role for epigenetic pathways to regulate viral transcription. The chromatin-organising transcriptional insulator protein, CCCTC-binding factor (CTCF), has been reported to regulate transcription in a diverse range of viruses. We identified two conserved CTCF binding sites in the HBV genome within enhancer I and chromatin immunoprecipitation (ChIP) analysis demonstrated an enrichment of CTCF binding to integrated or episomal copies of the viral genome. siRNA knock-down of CTCF results in a significant increase in pre-genomic RNA levels in de novo infected HepG2 cells and those supporting episomal HBV DNA replication. Furthermore, mutation of these sites in HBV DNA minicircles abrogated CTCF binding and increased pre-genomic RNA levels, providing evidence of a direct role for CTCF in repressing HBV transcription.


Assuntos
Fator de Ligação a CCCTC/fisiologia , Elementos Facilitadores Genéticos , Regulação Viral da Expressão Gênica , Vírus da Hepatite B/fisiologia , Transcrição Viral , Sítios de Ligação , Linhagem Celular , Cromatina/metabolismo , Imunoprecipitação da Cromatina , DNA Viral/metabolismo , Epigenômica , Células Hep G2 , Hepatite B/virologia , Humanos , Mutação , RNA Viral , Replicação Viral
13.
Nat Commun ; 11(1): 3045, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32546717

RESUMO

Chronic NF-κB activation in inflammation and cancer has long been linked to persistent activation of NF-κB-responsive gene promoters. However, NF-κB factors also massively bind to gene bodies. Here, we demonstrate that recruitment of the NF-κB factor RELA to intragenic regions regulates alternative splicing upon NF-κB activation by the viral oncogene Tax of HTLV-1. Integrative analyses of RNA splicing and chromatin occupancy, combined with chromatin tethering assays, demonstrate that DNA-bound RELA interacts with and recruits the splicing regulator DDX17, in an NF-κB activation-dependent manner. This leads to alternative splicing of target exons due to the RNA helicase activity of DDX17. Similar results were obtained upon Tax-independent NF-κB activation, indicating that Tax likely exacerbates a physiological process where RELA provides splice target specificity. Collectively, our results demonstrate a physical and direct involvement of NF-κB in alternative splicing regulation, which significantly revisits our knowledge of HTLV-1 pathogenesis and other NF-κB-related diseases.


Assuntos
Processamento Alternativo/fisiologia , Produtos do Gene tax/metabolismo , NF-kappa B/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Regulação da Expressão Gênica , Produtos do Gene tax/genética , Vírus Linfotrópico T Tipo 1 Humano/patogenicidade , Humanos , Leucócitos Mononucleares/virologia , NF-kappa B/genética , Oncogenes , Fator de Transcrição RelA/metabolismo
14.
BMB Rep ; 51(12): 613-622, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30293550

RESUMO

RNA helicases DDX5 and DDX17 are multitasking proteins that regulate gene expression in different biological contexts through diverse activities. Special attention has long been paid to their function as coregulators of transcription factors, providing insight about their functional association with a number of chromatin modifiers and remodelers. However, to date, the variety of described mechanisms has made it difficult to understand precisely how these proteins work at the molecular level, and the contribution of their ATPase domain to these mechanisms remains unclear as well. In light of their association with long noncoding RNAs that are key epigenetic regulators, an emerging view is that DDX5 and DDX17 may act through modulating the activity of various ribonucleoprotein complexes that could ensure their targeting to specific chromatin loci. This review will comprehensively describe the current knowledge on these different mechanisms. We will also discuss the potential roles of DDX5 and DDX17 on the 3D chromatin organization and how these could impact gene expression at the transcriptional and post-transcriptional levels. [BMB Reports 2018; 51(12): 613-622].


Assuntos
Cromatina/metabolismo , RNA Helicases DEAD-box/metabolismo , Animais , Montagem e Desmontagem da Cromatina , RNA Helicases DEAD-box/química , Humanos , Processamento de Proteína Pós-Traducional , RNA não Traduzido/química , RNA não Traduzido/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
15.
Elife ; 72018 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-30247122

RESUMO

Transcription factors achieve specificity by establishing intricate interaction networks that will change depending on the cell context. Capturing these interactions in live condition is however a challenging issue that requires sensitive and non-invasive methods.We present a set of fly lines, called 'multicolor BiFC library', which covers most of the Drosophila transcription factors for performing Bimolecular Fluorescence Complementation (BiFC). The multicolor BiFC library can be used to probe two different binary interactions simultaneously and is compatible for large-scale interaction screens. The library can also be coupled with established Drosophila genetic resources to analyze interactions in the developmentally relevant expression domain of each protein partner. We provide proof of principle experiments of these various applications, using Hox proteins in the live Drosophila embryo as a case study. Overall this novel collection of ready-to-use fly lines constitutes an unprecedented genetic toolbox for the identification and analysis of protein-protein interactions in vivo.


Assuntos
Proteínas de Drosophila/genética , Drosophila/genética , Biblioteca Gênica , Mapeamento de Interação de Proteínas/métodos , Fatores de Transcrição/genética , Animais , Animais Geneticamente Modificados , Cor , Drosophila/embriologia , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Fluorescência , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência/métodos , Ligação Proteica , Fatores de Transcrição/metabolismo
16.
Nucleic Acids Res ; 46(15): 7686-7700, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-29931089

RESUMO

The Repressor Element 1-silencing transcription factor (REST) represses a number of neuronal genes in non-neuronal cells or in undifferentiated neural progenitors. Here, we report that the DEAD box RNA helicase DDX17 controls important REST-related processes that are critical during the early phases of neuronal differentiation. First, DDX17 associates with REST, promotes its binding to the promoter of a subset of REST-targeted genes and co-regulates REST transcriptional repression activity. During neuronal differentiation, we observed a downregulation of DDX17 along with that of the REST complex that contributes to the activation of neuronal genes. Second, DDX17 and its paralog DDX5 regulate the expression of several proneural microRNAs that are known to target the REST complex during neurogenesis, including miR-26a/b that are also direct regulators of DDX17 expression. In this context, we propose a new mechanism by which RNA helicases can control the biogenesis of intronic miRNAs. We show that the processing of the miR-26a2 precursor is dependent on RNA helicases, owing to an intronic regulatory region that negatively impacts on both miRNA processing and splicing of its host intron. Our work places DDX17 in the heart of a pathway involving REST and miRNAs that allows neuronal gene repression.


Assuntos
RNA Helicases DEAD-box/genética , Perfilação da Expressão Gênica , MicroRNAs/genética , Proteínas Repressoras/genética , Linhagem Celular Tumoral , RNA Helicases DEAD-box/metabolismo , Humanos , Células MCF-7 , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Neurônios/metabolismo , Proteínas Repressoras/metabolismo
17.
BMC Infect Dis ; 14: 561, 2014 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-25358548

RESUMO

BACKGROUND: We describe histological, clinical findings and outcomes of renal involvement during Leishmania infantum infection in four HIV-infected patients in South France and North Italy hospital settings. CASES PRESENTATION: Four HIV-infected Caucasian patients (age 24-49) performed renal biopsy during episodes of visceral leishmaniasis. They presented severe immunosuppression, frequent relapses of visceral leishmaniasis during a follow-up period of several years and partial or complete recovery of renal function after anti-parasitic treatment. Main clinical presentations were nephrotic or nephritic syndrome and/or acute renal failure secondary to membranoproliferative type III glomerulonephritis or acute interstitial nephritis. Clinical outcome was poor, probably as a consequence of insufficient immuno-virological control of the HIV infection. CONCLUSIONS: Our findings suggest that the main histological findings in case of renal involvement due to Leishmania infantum infection in HIV-infected patients are type III MPGN and acute interstitial nephritis, with a histological specificity similar to that observed in canine leishmaniasis. Poor immune status in HIV-infected patients, altering the capacity for parasite clearance, and prolonged course of chronic active VL in this population may lead to the development of specific renal lesions.


Assuntos
Infecções Oportunistas Relacionadas com a AIDS/patologia , Leishmania infantum , Leishmaniose Visceral/patologia , Nefrite Intersticial/patologia , Infecções Oportunistas Relacionadas com a AIDS/complicações , Adulto , França , Humanos , Itália , Leishmaniose Visceral/complicações , Pessoa de Meia-Idade , Nefrite Intersticial/complicações
18.
Nucleic Acids Res ; 42(21)2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25260593

RESUMO

The characterization of transcription factor complexes and their binding sites in the genome by affinity purification has yielded tremendous new insights into how genes are regulated. The affinity purification requires either the use of antibodies raised against the factor of interest itself or by high-affinity binding of a C- or N-terminally added tag sequence to the factor. Unfortunately, fusing extra amino acids to the termini of a factor can interfere with its biological function or the tag may be inaccessible inside the protein. Here, we describe an effective solution to that problem by integrating the 'tag' close to the nuclear localization sequence domain of the factor. We demonstrate the effectiveness of this approach with the transcription factors Fli-1 and Irf2bp2, which cannot be tagged at their extremities without loss of function. This resulted in the identification of novel proteins partners and a new hypothesis on the contribution of Fli-1 to hematopoiesis.


Assuntos
Sinais de Localização Nuclear , Proteínas Nucleares/análise , Fatores de Transcrição/análise , Animais , Diferenciação Celular , Linhagem Celular Tumoral , Proteínas Nucleares/química , Proteína Proto-Oncogênica c-fli-1/análise , Proteína Proto-Oncogênica c-fli-1/química , Proteína Proto-Oncogênica c-fli-1/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
19.
PLoS One ; 7(10): e46799, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23056458

RESUMO

Clonal erythroleukemia developing in susceptible mice infected by Friend virus complex are associated with highly recurrent proviral insertions at one of three loci called Spi-1, Fli-1 or Fli-3, leading to deregulated expression of oncogenic Spi-1 or Fli-1 transcription factors or miR-17-92 miRNA cluster, respectively. Deregulated expression of each of these three oncogenes has been independently shown to contribute to cell proliferation of erythroleukemic clones. Previous studies showed a close relationship between Spi-1 and Fli-1, which belong to the same ETS family, Spi-1 activating fli-1 gene, and both Spi-1 and Fli-1 activating multiple common target genes involved in ribosome biogenesis. In this study, we demonstrated that Spi-1 and Fli-1 are also involved in direct miR-17-92 transcriptional activation through their binding to a conserved ETS binding site in its promoter. Moreover, we demonstrated that physiological re-expression of exogenous miR-17 and miR-20a are able to partially rescue the proliferation loss induced by Fli-1 knock-down and identified HBP1 as a target of these miRNA in erythroleukemic cells. These results establish that three of the most recurrently activated oncogenes in Friend erythroleukemia are actually involved in a same oncogenic network controlling cell proliferation. The putative contribution of a similar ETS-miR-17-92 network module in other normal or pathological proliferative contexts is discussed.


Assuntos
Leucemia Eritroblástica Aguda/metabolismo , MicroRNAs/metabolismo , Peptídeos/metabolismo , Proteína Proto-Oncogênica c-fli-1/metabolismo , Animais , Western Blotting , Linhagem Celular Tumoral , Proliferação de Células , Imunoprecipitação da Cromatina , Peptídeos e Proteínas de Sinalização Intercelular , Leucemia Eritroblástica Aguda/genética , Camundongos , MicroRNAs/genética , Peptídeos/genética , Regiões Promotoras Genéticas/genética , Proteína Proto-Oncogênica c-fli-1/genética
20.
Mol Cell Biol ; 29(10): 2852-64, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19289502

RESUMO

Spi-1 and Fli-1 are ETS transcription factors recurrently deregulated in mouse erythroleukemia induced by Friend viruses. Since they share the same core DNA binding site, we investigated whether they may contribute to erythroleukemia by common mechanisms. Using inducible knockdown, we demonstrated that Fli-1 contributes to proliferation, survival, and differentiation arrest of erythroleukemic cells harboring an activated fli-1 locus. Similarly, we used inducible Fli-1 knockdown and either hexamethylenebisacetamide (HMBA)- or small interfering RNA-mediated Spi-1 knockdown to investigate their respective contributions in erythroleukemic cells harboring an activated spi-1 locus. In these cells, simple or double knockdown of both Spi-1 and Fli-1 additively contributed to induce proliferation arrest and differentiation. Transcriptome profiling revealed that virtually all transcripts affected by both Fli-1 knockdown and HMBA are affected in an additive manner. Among these additively downregulated transcripts, more than 20% encode proteins involved in ribosome biogenesis, and conserved ETS binding sites are present in their gene promoters. Through chromatin immunoprecipitation, we demonstrated the association of Spi-1 and Fli-1 on these promoters in Friend erythroleukemic cells. These data lead us to propose that the oncogenicity of Spi-1, Fli-1, and possibly other ETS transcription factors may involve their ability to stimulate ribosome biogenesis.


Assuntos
Vírus da Leucemia Murina de Friend/metabolismo , Leucemia Eritroblástica Aguda , Peptídeos/metabolismo , Proteína Proto-Oncogênica c-fli-1/metabolismo , Ribossomos/metabolismo , Células Tumorais Cultivadas/fisiologia , Animais , Apoptose/fisiologia , Proliferação de Células , Vírus da Leucemia Murina de Friend/genética , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Camundongos , Peptídeos/genética , Fenótipo , Proteína Proto-Oncogênica c-fli-1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...