Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(6): 6165-6183, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38371781

RESUMO

With a growing global population, agricultural scientists are focusing on crop production management and the creation of new strategies for a higher agricultural output. However, the growth of undesirable plants besides the primary crop poses a significant challenge in agriculture, necessitating the massive application of herbicides to eradicate this problem. Several synthetic herbicides are widely utilized, with glyphosate emerging as a potential molecule for solving this emerging issue; however, it has several environmental and health consequences. Several weed species have evolved resistance to this herbicide, therefore lowering agricultural yield. The persistence of glyphosate residue in the environment, such as in water and soil systems, is due to the misuse of glyphosate in agricultural regions, which causes its percolation into groundwater via the vertical soil profile. As a result, it endangers many nontarget organisms existing in the natural environment, which comprises both soil and water. The current Review aims to provide a systemic analysis of glyphosate, its various effects on the environment, its subsequent impact on human health and animals, which will lead us toward a better understanding of the issues about herbicide usage and aid in managing it wisely, as in the near the future glyphosate market is aiming for a positive forecast until 2035.

2.
Curr Issues Mol Biol ; 46(1): 585-611, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38248340

RESUMO

Numerous surgeries are carried out to replace tissues that have been harmed by an illness or an accident. Due to various surgical interventions and the requirement of bone substitutes, the emerging field of bone tissue engineering attempts to repair damaged tissues with the help of scaffolds. These scaffolds act as template for bone regeneration by controlling the development of new cells. For the creation of functional tissues and organs, there are three elements of bone tissue engineering that play very crucial role: cells, signals and scaffolds. For the achievement of these aims, various types of natural polymers, like chitosan, chitin, cellulose, albumin and silk fibroin, have been used for the preparation of scaffolds. Scaffolds produced from natural polymers have many advantages: they are less immunogenic as well as being biodegradable, biocompatible, non-toxic and cost effective. The hierarchal structure of bone, from microscale to nanoscale, is mostly made up of organic and inorganic components like nanohydroxyapatite and collagen components. This review paper summarizes the knowledge and updates the information about the use of natural polymers for the preparation of scaffolds, with their application in recent research trends and development in the area of bone tissue engineering (BTE). The article extensively explores the related research to analyze the advancement of nanotechnology for the treatment of bone-related diseases and bone repair.

3.
ACS Omega ; 8(34): 31318-31332, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37663466

RESUMO

Nations all over the world are imposing ban on single-use plastics, which are difficult to recycle and lead to creations of nonsustainable and nondegradable piles. To match the requirement in the market, suitable food packaging alternatives have to be developed that are biodegradable and environment-friendly. The current work is designed for the fabrication of a novel nanocomposite by blending xanthan gum in a chitosan matrix and reinforcing it with ZnO nanoparticles, through a solution casting method. Surface morphology of the film was investigated through field emission scanning electron microscopy, along with energy-dispersive X-ray spectroscopy mapping, and characterized through thermogravimetric analysis, Fourier transform infrared (FTIR) spectroscopy, mechanical testing, and ultraviolet spectroscopy. FTIR spectroscopy analysis corroborated the interaction between the components and the H-bond formation. Polyelectrolyte complex formation materializes between the oppositely charged chitosan and xanthan gum, and further nanoparticle incorporation significantly improves the mechanical properties. The synthesized nanocomposite was found to have increases in the tensile strength and elongation at break of pure chitosan by up to 6.65 and 3.57 times, respectively. The transmittance percentage of the bionanocomposite film was reduced compared to that of the pure chitosan film, which aids in lowering the oxidative damage brought on by UV radiation in packed food products. Moreover, the film also showed an enhanced barrier property against water vapor and oxygen gas. The film was totally biodegradable in soil burial at the end of the second month; it lost almost around 88% of its initial weight. The fabricated film does not pose a threat to the environment and hence has great potential for application in the future sustainable food packaging industry.

4.
Open Biol ; 13(5): 220355, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37132222

RESUMO

Papaver somniferum L. (Family: Papaveraceae) is a species well known for its diverse alkaloids (100 different benzylisoquinoline alkaloids (BIAs)). L-tyrosine serves as a precursor of several specific metabolites like BIAs. It has been used as an antitussive and potent analgesic to alleviate mild to extreme pain since ancient times. The extraction of pharmaceutically important alkaloids like morphine and codeine from poppy plant reflects the need for the most suitable and standard methods. Several analytical and extraction techniques have been reported in open literature for morphine, codeine and other important alkaloids which play a vital function in drug development and drug discovery. Many studies suggest that opioids are also responsible for adverse effects or secondary complications like dependence and withdrawal. In recent years, opium consumption and addiction are the most important risk factors. Many evidence-based reviews suggest that opium consumption is directly linked or acts as a risk factor for different cancers. In this review, we highlight significant efforts related to research which have been done over the past 5 decades and the complete information on Papaver somniferum including its phytochemistry, pharmacological actions, biosynthetic pathways and analytical techniques of opium alkaloid extraction and the link between opium consumption and cancer-related updates.


Assuntos
Alcaloides , Benzilisoquinolinas , Neoplasias , Papaver , Ópio/efeitos adversos , Ópio/metabolismo , Alcaloides/farmacologia , Alcaloides/metabolismo , Benzilisoquinolinas/farmacologia , Benzilisoquinolinas/metabolismo , Papaver/metabolismo , Codeína/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/etiologia , Derivados da Morfina/metabolismo
5.
IET Nanobiotechnol ; 17(3): 127-153, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36912242

RESUMO

Uncontrolled waste generation and management difficulties are causing chaos in the ecosystem. Although it is vital to ease environmental pressures, right now there is no such practical strategy available for the treatment or utilisation of waste material. Because the Earth's resources are limited, a long-term, sustainable, and sensible solution is necessary. Currently waste material has drawn a lot of attention as a renewable resource. Utilisation of residual biomass leftovers appears as a green and sustainable approach to lessen the waste burden on Earth while meeting the demand for bio-based goods. Several biopolymers are available from renewable waste sources that have the potential to be used in a variety of industries for a wide range of applications. Natural and synthetic biopolymers have significant advantages over petroleum-based polymers in terms of cost-effectiveness, environmental friendliness, and user-friendliness. Using waste as a raw material through industrial symbiosis should be taken into account as one of the strategies to achieve more economic and environmental value through inter-firm collaboration on the path to a near-zero waste society. This review extensively explores the different biopolymers which can be extracted from several waste material sources and that further have potential applications in food packaging industries to enhance the shelf life of perishables. This review-based study also provides key insights into the different strategies and techniques that have been developed recently to extract biopolymers from different waste byproducts and their feasibility in practical applications for the food packaging business.


Assuntos
Ecossistema , Nanocompostos , Simbiose , Biopolímeros , Embalagem de Alimentos , Resíduos Industriais
6.
Biotechnol Biofuels Bioprod ; 16(1): 44, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36915167

RESUMO

Bioethanol is recognized as a valuable substitute for renewable energy sources to meet the fuel and energy demand of the nation, considered an environmentally friendly resource obtained from agricultural residues such as sugarcane bagasse, rice straw, husk, wheat straw and corn stover. The energy demand is sustained using lignocellulosic biomass to produce bioethanol. Lignocellulosic biomass (LCBs) is the point of attention in replacing the dependence on fossil fuels. The recalcitrant structure of the lignocellulosic biomass is disrupted using effective pretreatment techniques that separate complex interlinked structures among cellulose, hemicellulose, and lignin. Pretreatment of biomass involves various physical, chemical, biological, and physiochemical protocols which are of importance, dependent upon their individual or combined dissolution effect. Physical pretreatment involves a reduction in the size of the biomass using mechanical, extrusion, irradiation, and sonification methods while chemical pretreatment involves the breaking of various bonds present in the LCB structure. This can be obtained by using an acidic, alkaline, ionic liquid, and organosolvent methods. Biological pretreatment is considered an environment-friendly and safe process involving various bacterial and fungal microorganisms. Distinct pretreatment methods, when combined and utilized in synchronization lead to more effective disruption of LCB, making biomass more accessible for further processing. These could be utilized in terms of their effectiveness for a particular type of cellulosic fiber and are namely steam explosion, liquid hot water, ammonia fibre explosion, CO2 explosion, and wet air oxidation methods. The present review encircles various distinct and integrated pretreatment processes developed till now and their advancement according to the current trend and future aspects to make lignocellulosic biomass available for further hydrolysis and fermentation.

7.
Pharmaceuticals (Basel) ; 14(11)2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34832945

RESUMO

Bone-related diseases have been increasing worldwide, and several nanocomposites have been used to treat them. Among several nanocomposites, polyhydroxybutyrate (PHB)-based nanocomposites are widely used in drug delivery and tissue engineering due to their excellent biocompatibility and biodegradability. However, PHB use in bone tissue engineering is limited due to its inadequate physicochemical and mechanical properties. In the present work, we synthesized PHB-based nanocomposites using a nanoblend and nano-clay with modified montmorillonite (MMT) as a filler. MMT was modified using trimethyl stearyl ammonium (TMSA). Nanoblend and nano-clay were fabricated using the solvent-casting technique. Inspection of the composite structure revealed that the basal spacing of the polymeric matrix material was significantly altered depending on the loading percentage of organically modified montmorillonite (OMMT) nano-clay. The PHB/OMMT nanocomposite displayed enhanced thermal stability and upper working temperature upon heating as compared to the pristine polymer. The dispersed (OMMT) nano-clay assisted in the formation of pores on the surface of the polymer. The pore size was proportional to the weight percentage of OMMT. Further morphological analysis of these blends was carried out through FESEM. The obtained nanocomposites exhibited augmented properties over neat PHB and could have an abundance of applications in the industry and medicinal sectors. In particular, improved porosity, non-immunogenic nature, and strong biocompatibility suggest their effective application in bone tissue engineering. Thus, PHB/OMMT nanocomposites are a promising candidate for 3D organ printing, lab-on-a-chip scaffold engineering, and bone tissue engineering.

8.
3 Biotech ; 4(6): 579-589, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28324308

RESUMO

The composition and the organization of soil are changing rapidly by the diverged mankind activities, leading to the contamination of environment. Several methods are employed to clean up the environment from these kinds of contaminants, but most of them are costly and ineffective to yield optimum results. Phytoremediation is a natural green technology, which is eco-friendly for the removal of toxic metals from the polluted environment. Phytoremediation is a cost-effective technique through which the cleanup of contaminated soil laced with heavy metals is performed by wild weeds and small herbal plants. The phytoremediation technique provides a promising tool for hyperaccumulation of heavy metals; arsenic, lead, mercury, copper, chromium, and nickel, etc., by the wild weeds and that has been discussed here in detail in case of Cannabissativa, Solanum nigrum and Rorippa globosa. In general, weeds that have the intrinsic capacity to accumulate metals into their shoots and roots, have the ability to form phytochelates and formation of stable compound with ions. This behavior of accumulation along with chelate and stable compound formation is utilized as a tool for phytoremediation activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...