Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 466: 133610, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38309156

RESUMO

Arsenic (As) and silicon (Si) are two structurally competitive natural elements where Si minimises As accumulation in rice plants, and based on this two-year field trial, the study proposes adopting alternating wetting and drying (AWD) irrigation as a sustainable water management strategy allowing greater Si availability. This field-based project is the first report on AWD's impact on As-Si distribution in fluvio-alluvial soils of the entire Ganga valley (24 study sites, six divisions), seasonal variance (pre-monsoon and monsoon), rice plant anatomy and productivity, soil microbial diversity, microbial gene ontology profiling and associated metabolic pathways. Under AWD to flooded and pre-monsoon to monsoon cultivations, respectively, greater Si availability was achieved and As-bioavailability was reduced by 8.7 ± 0.01-9.2 ± 0.02% and 25.7 ± 0.09-26.1 ± 0.01%. In the pre-monsoon and monsoon seasons, the physiological betterment of rice plants led to the high rice grain yield under AWD improved by 8.4 ± 0.07% and 10.0 ± 0.07%, proving the economic profitability. Compared to waterlogging, AWD evidences as an optimal soil condition for supporting soil microbial communities in rice fields, allowing diverse metabolic activities, including As-resistance, and active expression of As-responsive genes and gene products. Greater expressions of gene ontological terms and complex biochemical networking related to As metabolism under AWD proved better cellular, genetic and environmental responsiveness in microbial communities. Finally, by implementing AWD, groundwater usage can be reduced, lowering the cost of pumping and field management and generating an economic profit for farmers. These combined assessments prove the acceptability of AWD for the establishment of multiple sustainable development goals (SDGs).


Assuntos
Arsênio , Oryza , Água , Oryza/metabolismo , Arsênio/toxicidade , Arsênio/metabolismo , Solo/química , Abastecimento de Água
2.
Chemosphere ; 312(Pt 1): 137117, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36334731

RESUMO

Arsenic (As) contamination in paddy soils and its further translocation to the rice is a serious global issue. Arsenic loading to the rice depends on soil physico-chemical parameters and agronomic practices. To minimize this natural threat, as a natural substance, rice straw was used to produce rice biochar (RBC) and doped with iron oxide (IO) nanoparticles, another eco-friendly composite. In this study, RBC was used at three different concentrations- 0.5%, 1%, and 1.5% alone as well as conjugated with fixed 20 ppm IO nanoparticles. These treatments were compared with the control soil and control plants that had only As in the setup, without any amendments. The application of these treatments was efficient in reducing soil As bioavailability by 43.9%, 60.5%, and 57.3% respectively. Experimental data proved a significant percentage of As was adsorbed onto the RBC + IO conjugate. Further, the 1% RBC + IO conjugate was found to be the best treatment in terms of making soil macro-nutrients bioavailable. Rice seedlings grown under this treatment was more stress tolerant and produced less antioxidant enzymes and stress markers compared to the control plants grown under As-stress only. Rice plants from these different growth setups were observed for internal anatomical integrity and found that the RBC alone and RBC + IO conjugate, both improved the internal vascular structure compared to the control plants. To minimize soil As stress in crops, IO-doped RBC was proven to be the best sustainable amendment for improving soil-crop quality and achieving the proposed motto of Sustainable Development Goals by the United Nations.


Assuntos
Arsênio , Oryza , Poluentes do Solo , Arsênio/análise , Solo/química , Oryza/química , Poluentes do Solo/análise , Desenvolvimento Sustentável , Carvão Vegetal/química , Nutrientes
3.
Chemosphere ; 300: 134433, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35390408

RESUMO

The present study analysed the levels of potentially toxic elements along with physico-chemical properties of agricultural soil samples (n = 59) collected from fields situated along the path of river Ganga in the middle Gangetic floodplain in two districts, Ballia and Ghazipur. Arsenic (As), chromium (Cr), copper (Cu), nickel (Ni), zinc (Zn), lead (Pb), iron (Fe) and manganese (Mn) levels were analysed by Wavelength Dispersive-X-Ray Fluorescence Spectroscopy (WD-XRF) and the associated health risks along with diverse indices were calculated. The mean concentrations of As, Cu, Cr, Pb, Zn and Ni were found to be 15, 42, 85, 18, 87 and 47 mg kg-1, respectively in Ballia and 13, 31, 73, 22, 77 and 34 mg kg-1, respectively in Ghazipur. Physico-chemical properties like pH, ORP and organic matter were found to be 7.91, 209 and 1.20, respectively in Ballia and 8.51, 155 and 1.25, respectively in Ghazipur. The calculated health quotient (HQ) for all the elements was observed to be within the threshold value of one, however with few exemptions. Therefore, the present study showcases the contamination of potentially toxic elements in agricultural fields and possible health hazards for people.


Assuntos
Arsênio , Metais Pesados , Poluentes do Solo , Arsênio/análise , Monitoramento Ambiental/métodos , Humanos , Índia , Chumbo/análise , Metais Pesados/análise , Medição de Risco/métodos , Solo/química , Poluentes do Solo/análise
4.
Chemosphere ; 288(Pt 2): 132588, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34662638

RESUMO

The increasing industrialization and urbanization are also triggering environmental pollution, mostly unnoticed, in the case of soil pollution due to uncontrolled contamination by toxic elemental dispersion. The present study focused on this aspect and studied the clean-up of urban soil in a low-cost and eco-friendly way to restrict arsenic (As), lead (Pb) and mercury (Hg) contamination. Four potential ornamental plants, Catharanthus roseus (vinca), Cosmos bipinnatus (cosmos), Gomphrena globose (globosa) and Impatiens balsamina (balsamina) were used along with zero valent iron (ZVI) nanoparticles (Fe NPs) for remediation of the soil spiked with As (70 mg kg-1), Pb (600 mg kg-1) and Hg (15 mg kg-1) in a 60 d pot experiment. All plants were divided into four groups viz. control, spiked, spiked+20 mg kg-1 ZVI NP and spiked+50 mg kg-1 ZVI NP. FTIR and SEM were used for ZVI NP characterization. Soil and plant analyses and elemental assessments were done using ICP-MS, XRF and SEM. Among the four plants, cosmos showed the maximum accumulation of toxic elements (41.24 ± 0.022 mg kg-1 As, 139.15 ± 11.2 mg kg-1 Pb and 15.57 ± 0.27 mg kg-1 Hg) at 60 d. The application of ZVI NP at 20 mg kg-1 dosage was found to further augment plants' potential for metal(loid)s accumulation without negatively hampering their growth. Cosmos were observed to reduce soil As from 81.35 ± 1.34 mg kg-1 to 28.16 ± 1.38 mg kg-1 (65.38%), Pb from 1132.47 ± 4.66 to 516.09 ± 3.15 mg kg-1 (54.42%) and Hg from 17.35 ± 0.88 to 6.65 ± 0.4 mg kg-1 (61.67%) at 60 d in spiked + 20 mg kg-1 ZVI NP treatment. Balsamina was the most sensitive plant and showed the least metal(loid)s accumulation. In conclusion, three of these plants are potent enough to use together for a better and enhanced removal of toxic elements from the contaminated soil with cosmos to be the best amongst these in urban areas.


Assuntos
Ferro , Nanopartículas , Biodegradação Ambiental
5.
J Hazard Mater ; 409: 124443, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33191021

RESUMO

Arsenic (As) assessment in agricultural soils and corresponding crops is necessary from the global health safety perspective. To the best of our knowledge, we are reporting for the first time, As flux determining parametric equations for paddy field with seasonal rice cultivation under conventional flooding and dry-wet irrigation approaches. Rigorous field experiments and measuring quantitative parameters, flushed out or percolated into the deeper soil As flux was assessed. A wintery (boro)-monsoonal (aman) study from 2016 to 2019 has been conducted showing the efficiency of dry-wet irrigation on reduction of soil As bioavailability. The reduction in boro was 52.4% in 2016 to 64.8% in 2019 while in aman, it was 61% in 2016 to 74.9% in 2019. Low bioavailability was correlated to plant's internal vascular structure that was found more rigid and firm in dry-wet field grown plants. Observed soil physico-chemical parameters clearly influenced As bioavailability as well as soil microbial community. Assessment of microbial diversity using metagenomics under altered water regime was done by population analysis, relative abundance, species richness, Krona chart comparison. Dry-wet field was found to be more diverse and enriched in microbial community than that of the flooded soil indicating an affective reduction of As bioavailability under biotic-abiotic factors.


Assuntos
Arsênio , Oryza , Poluentes do Solo , Poluentes Químicos da Água , Irrigação Agrícola , Arsênio/análise , Solo , Poluentes do Solo/análise , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA