Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 211: 108712, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38733940

RESUMO

Phosphorus (P), a macronutrient, plays key roles in plant growth, development, and yield. Phosphate (Pi) transporters (PHTs) and PHOSPHATE1 (PHO1) are central to Pi acquisition and distribution. Potentially, PHO1 is also involved in signal transduction under low P. The current study was designed to identify and functionally characterize the PHO1 gene family in chickpea (CaPHO1s). Five CaPHO1 genes were identified through a comprehensive genome-wide search. Phylogenetically, CaPHO1s formed two clades, and protein sequence analyses confirmed the presence of conserved domains. CaPHO1s are expressed in different plant organs including root nodules and are induced by Pi-limiting conditions. Functional complementation of atpho1 mutant with three CaPHO1 members, CaPHO1, CaPHO1;like, and CaPHO1;H1, independently demonstrated their role in root to shoot Pi transport, and their redundant functions. To further validate this, we raised independent RNA-interference (RNAi) lines of CaPHO1, CaPHO1;like, and CaPHO1;H1 along with triple mutant line in chickpea. While single gene RNAi lines behaved just like WT, triple knock-down RNAi lines (capho1/like/h1) showed reduced shoot growth and shoot Pi content. Lastly, we showed that CaPHO1s are involved in root nodule development and Pi content. Our findings suggest that CaPHO1 members function redundantly in root to shoot Pi export and root nodule development in chickpea.

2.
Planta ; 259(1): 17, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38078944

RESUMO

MAIN CONCLUSION: Soil compaction reduces root exploration in chickpea. We found genes related to root architectural traits in chickpea that can help understand and improve root growth in compacted soils. Soil compaction is a major concern for modern agriculture, as it constrains plant root growth, leading to reduced resource acquisition. Phenotypic variation for root system architecture (RSA) traits in compacted soils is present for various crops; however, studies on genetic associations with these traits are lacking. Therefore, we investigated RSA traits in different soil compaction levels and identified significant genomic associations in chickpea. We conducted a Genome-Wide Association Study (GWAS) of 210 chickpea accessions for 13 RSA traits under three bulk densities (BD) (1.1BD, 1.6BD, and 1.8BD). Soil compaction decreases root exploration by reducing 12 RSA traits, except average diameter (AD). Further, AD is negatively correlated with lateral root traits, and this correlation increases in 1.8BD, suggesting the negative effect of AD on lateral root traits. Interestingly, we identified probable candidate genes such as GLP3 and LRX for lateral root traits and CRF1-like for total length (TL) in 1.6BD soil. In heavy soil compaction, DGK2 is associated with lateral root traits. Reduction in laterals during soil compaction is mainly due to delayed seedling establishment, thus making lateral root number a critical trait. Interestingly, we also found a higher contribution of the  GxE component of the number of root tips (Tips) to the total variation than the other lateral traits. We also identified a pectin esterase, PPE8B, associated with Tips in high soil compaction and a significantly associated SNP with the relative change in Tips depicting a trade-off between Tips and AD. Identified genes and loci would help develop soil-compaction-resistant chickpea varieties.


Assuntos
Cicer , Solo , Estudo de Associação Genômica Ampla , Cicer/genética , Raízes de Plantas/genética , Genômica
3.
Plant J ; 116(6): 1748-1765, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37715733

RESUMO

The plant citrate transporters, functional in mineral nutrient uptake and homeostasis, usually belong to the multidrug and toxic compound extrusion transporter family. We identified and functionally characterized a rice (Oryza sativa) citrate transporter, OsCT1, which differs from known plant citrate transporters and is structurally close to rice silicon transporters. Domain analysis depicted that OsCT1 carries a bacterial citrate-metal transporter domain, CitMHS. OsCT1 showed citrate efflux activity when expressed in Xenopus laevis oocytes and is localized to the cell plasma membrane. It is highly expressed in the shoot and reproductive tissues of rice, and its promoter activity was visible in cells surrounding the vasculature. The OsCT1 knockout (KO) lines showed a reduced citrate content in the shoots and the root exudates, whereas overexpression (OE) line showed higher citrate exudation from their roots. Further, the KO and OE lines showed variations in the manganese (Mn) distribution leading to changes in their agronomical traits. Under deficient conditions (Mn-sufficient conditions followed by 8 days of 0 µm MnCl2 · 4H2 O treatment), the supply of manganese towards the newer leaf was found to be obstructed in the KO line. There were no significant differences in phosphorus (P) distribution; however, P uptake was reduced in the KO and increased in OE lines at the vegetative stage. Further, experiments in Xenopus oocytes revealed that OsCT1 could efflux citrate with Mn. In this way, we provide insights into a mechanism of citrate-metal transport in plants and its role in mineral homeostasis, which remains conserved with their bacterial counterparts.


Assuntos
Oryza , Oryza/genética , Oryza/metabolismo , Manganês/metabolismo , Fósforo/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Ácido Cítrico/metabolismo , Minerais/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
4.
Plant Physiol ; 192(2): 1548-1568, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-36852886

RESUMO

Sucrose and auxin are well-known determinants of root system architecture (RSA). However, the factors that connect the signaling pathways evoked by these two critical factors during root development are poorly understood. In this study, we report the role of MEDIATOR SUBUNIT17 (MED17) in RSA and its involvement in the transcriptional integration of sugar and auxin signaling pathways in Arabidopsis (Arabidopsis thaliana). Sucrose regulates root meristem activation through the TARGET OF RAPAMYCIN-E2 PROMOTER BINDING FACTOR A (TOR-E2FA) pathway, and auxin regulates lateral root (LR) development through AUXIN RESPONSE FACTOR-LATERAL ORGAN BOUNDARIES DOMAIN (ARF-LBDs). Both sucrose and auxin play a vital role during primary and LR development. However, there is no clarity on how sucrose is involved in the ARF-dependent regulation of auxin-responsive genes. This study establishes MED17 as a nodal point to connect sucrose and auxin signaling. Transcription of MED17 was induced by sucrose in an E2FA/B-dependent manner. Moreover, E2FA/B interacted with MED17, which can aid in the recruitment of the Mediator complex on the target promoters. Interestingly, E2FA/B and MED17 also occupied the promoter of ARF7, but not ARF19, leading to ARF7 expression, which then activates auxin signaling and thus initiates LR development. MED17 also activated cell division in the root meristem by occupying the promoters of cell-cycle genes, thus regulating their transcription. Thus, MED17 plays an important role in relaying the transcriptional signal from sucrose to auxin-responsive and cell-cycle genes to regulate primary and lateral root development, highlighting the role of the Mediator as the transcriptional processor for optimal root system architecture in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição/metabolismo , Mutação , Ácidos Indolacéticos/farmacologia , Ácidos Indolacéticos/metabolismo , Sacarose/farmacologia , Sacarose/metabolismo , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
5.
Plant Cell Physiol ; 64(5): 501-518, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36807470

RESUMO

Phosphate (Pi) deficiency leads to the induction of purple acid phosphatases (PAPs) in plants, which dephosphorylate organic phosphorus (P) complexes in the rhizosphere and intracellular compartments to release Pi. In this study, we demonstrate that OsPAP3b belongs to group III low-molecular weight PAP and is low Pi-responsive, preferentially in roots. The expression of OsPAP3b is negatively regulated with Pi resupply. Interestingly, OsPAP3b was found to be dual localized to the nucleus and secretome. Furthermore, OsPAP3b is transcriptionally regulated by OsPHR2 as substantiated by DNA-protein binding assay. Through in vitro biochemical assays, we further demonstrate that OsPAP3b is a functional acid phosphatase (APase) with broad substrate specificity. The overexpression (OE) of OsPAP3b in rice led to increased secreted APase activity and improved mineralization of organic P sources, which resulted in better growth of transgenics compared to the wild type when grown on organic P as an exogenous P substrate. Under Pi deprivation, OsPAP3b knock-down and knock-out lines showed no significant changes in total P content and dry biomass. However, the expression of other phosphate starvation-induced genes and the levels of metabolites were found to be altered in the OE and knock-down lines. In addition, in vitro pull-down assay revealed multiple putative interacting proteins of OsPAP3b. Our data collectively suggest that OsPAP3b can aid in organic P utilization in rice. The APase isoform behavior and nuclear localization indicate its additional role, possibly in stress signaling. Considering its important roles, OsPAP3b could be a potential target for improving low Pi adaptation in rice.


Assuntos
Oryza , Oryza/genética , Oryza/metabolismo , Fósforo/metabolismo , Fosfatos/metabolismo , Transporte Biológico , Organofosfatos/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
6.
Plant Biotechnol J ; 21(4): 726-741, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36593511

RESUMO

Under field conditions, plants are often simultaneously exposed to several abiotic and biotic stresses resulting in significant reductions in growth and yield; thus, developing a multi-stress tolerant variety is imperative. Previously, we reported the neofunctionalization of a novel PNP family protein, Putranjiva roxburghii purine nucleoside phosphorylase (PRpnp) to trypsin inhibitor to cater to the needs of plant defence. However, to date, no study has revealed the potential role and mechanism of either member of this protein group in plant defence. Here, we overexpressed PRpnp in Citrus aurantifolia which showed nuclear-cytoplasmic localization, where it functions in maintaining the intracellular purine reservoir. Overexpression of PRpnp significantly enhanced tolerance to salt, oxidative stress, alkaline pH, drought and two pests, Papilio demoleus and Scirtothrips citri in transgenic plants. Global gene expression studies revealed that PRpnp overexpression up-regulated differentially expressed genes (DEGs) related to ABA- and JA-biosynthesis and signalling, plant defence, growth and development. LC-MS/MS analysis validated higher endogenous ABA and JA accumulation in transgenic plants. Taken together, our results suggest that PRpnp functions by enhancing the endogenous ABA and JA, which interact synergistically and it also inhibits trypsin proteases in the insect gut. Also, like other purine salvage genes, PRpnp also regulates CK metabolism and increases the levels of CK-free bases in transgenic Mexican lime. We also suggest that PRpnp can be used as a potential candidate to develop new varieties with improved plant vigour and enhanced multiple stress resistance.


Assuntos
Ácido Abscísico , Citrus , Ácido Abscísico/metabolismo , Cromatografia Líquida , Purina-Núcleosídeo Fosforilase/genética , Purina-Núcleosídeo Fosforilase/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Espectrometria de Massas em Tandem , Plantas Geneticamente Modificadas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Citrus/genética , Secas
7.
J Exp Bot ; 74(9): 2829-2844, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-36516418

RESUMO

Phosphorus (P) deficiency stress in combination with biotic stress(es) severely impacts crop yield. Plant responses to P deficiency overlapping with that of other stresses exhibit a high degree of complexity involving different signaling pathways. On the one hand, plants engage with rhizosphere microbiome/arbuscular mycorrhizal fungi for improved phosphate (Pi) acquisition and plant stress response upon Pi deficiency; on the other hand, this association is gets disturbed under Pi sufficiency. This nutrient-dependent response is highly regulated by the phosphate starvation response (PSR) mediated by the master regulator, PHR1, and its homolog, PHL. It is interesting to note that Pi status (deficiency/sufficiency) has a varying response (positive/negative) to different biotic encounters (beneficial microbes/opportunistic pathogens/insect herbivory) through a coupled PSR-PHR1 immune system. This also involves crosstalk among multiple players including transcription factors, defense hormones, miRNAs, and Pi transporters, among others influencing the plant-biotic-phosphate interactions. We provide a comprehensive view of these key players involved in maintaining a delicate balance between Pi homeostasis and plant immunity. Finally, we propose strategies to utilize this information to improve crop resilience to Pi deficiency in combination with biotic stresses.


Assuntos
Fosfatos , Raízes de Plantas , Fosfatos/metabolismo , Raízes de Plantas/metabolismo , Plantas/metabolismo , Fósforo/metabolismo , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas
8.
Front Plant Sci ; 13: 983969, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36267945

RESUMO

Root hairs (RH) are a single-cell extension of root epidermal cells. In low phosphorus (LP) availability, RH length and density increase thus expanding the total root surface area for phosphate (Pi) acquisition. However, details on genes involved in RH development and response to LP are missing in an agronomically important leguminous crop, chickpea. To elucidate this response in chickpea, we performed tissue-specific RNA-sequencing and analyzed the transcriptome modulation for RH and root without RH (Root-RH) under LP. Root hair initiation and cellular differentiation genes like RSL TFs and ROPGEFs are upregulated in Root-RH, explaining denser, and ectopic RH in LP. In RH, genes involved in tip growth processes and phytohormonal biosynthesis like cell wall synthesis and loosening (cellulose synthase A catalytic subunit, CaEXPA2, CaGRP2, and CaXTH2), cytoskeleton/vesicle transport, and ethylene biosynthesis are upregulated. Besides RH development, genes involved in LP responses like lipid and/or pectin P remobilization and acid phosphatases are induced in these tissues summarizing a complete molecular response to LP. Further, RH displayed preferential enrichment of processes involved in symbiotic interactions, which provide an additional benefit during LP. In conclusion, RH shows a multi-faceted response that starts with molecular changes for epidermal cell differentiation and RH initiation in Root-RH and later induction of tip growth and various LP responses in elongated RH.

9.
Trends Plant Sci ; 27(8): 749-757, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35606255

RESUMO

Root exudates are well-known 'labile' sources of soil carbon that can prime microbial activity. Recent investigations suggest that the stability of labile carbon inputs in soil mostly depends upon the physical, chemical, and biological properties of the surroundings. Here, we propose that, in some ecosystems, such as forests and grasslands, root exudates can function as a source of soil organic carbon (SOC) that can be stabilized through various mechanisms leading to long-term sequestration. Increasing soil carbon sequestration is important for capturing atmospheric CO2 and combating climate change issues. Thus, there is an urgent need to preserve existing ecosystems and to adopt strategies such as afforestation, reforestation, and establishment of artificial grasslands to foster carbon sequestration through higher root exudate inputs in the soil.


Assuntos
Sequestro de Carbono , Solo , Carbono , Ecossistema , Exsudatos e Transudatos , Solo/química
10.
J Exp Bot ; 73(14): 5033-5051, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35526193

RESUMO

Galactolipids are essential to compensate for the loss of phospholipids by 'membrane lipid remodelling' in plants under phosphorus (P) deficiency conditions. Monogalactosyl diacylglycerol (MGDG) synthases catalyse the synthesis of MGDG which is further converted into digalactosyl diacylglycerol (DGDG), later replacing phospholipids in the extraplastidial membranes. However, the roles of these enzymes are not well explored in rice. In this study, the rice MGDG synthase 3 gene (OsMGD3) was identified and functionally characterized. We showed that the plant phosphate (Pi) status and the transcription factor PHOSPHATE STARVATION RESPONSE 2 (OsPHR2) are involved in the transcriptional regulation of OsMGD3. CRISPR/Cas9 knockout and overexpression lines of OsMGD3 were generated to explore its potential role in rice adaptation to Pi deficiency. Compared with the wild type, OsMGD3 knockout lines displayed a reduced Pi acquisition and utilization while overexpression lines showed an enhancement of the same. Further, OsMGD3 showed a predominant role in roots, altering lateral root growth. Our comprehensive lipidomic analysis revealed a role of OsMGD3 in membrane lipid remodelling, in addition to a role in regulating diacylglycerol and phosphatidic acid contents that affected the expression of Pi transporters. Our study highlights the role of OsMGD3 in affecting both internal P utilization and P acquisition in rice.


Assuntos
Oryza , Diglicerídeos/metabolismo , Galactosiltransferases , Lipídeos de Membrana/metabolismo , Oryza/metabolismo , Fosfatos/metabolismo , Fosfolipídeos/metabolismo , Plantas/metabolismo
11.
Plant Direct ; 6(5): e401, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35582630

RESUMO

Seed size is one of the major determinants of seed weight and eventually, crop yield. As the global population is increasing beyond the capacity of current food production, enhancing seed size is a key target for crop breeders. Despite the identification of several genes and QTLs, current understanding about the molecular regulation of seed size/weight remains fragmentary. In the present study, we report novel role of a jasmonic acid (JA) signaling repressor, OsJAZ11 controlling rice seed width and weight. Transgenic rice lines overexpressing OsJAZ11 exhibited up to a 14% increase in seed width and ~30% increase in seed weight compared to wild type (WT). Constitutive expression of OsJAZ11 dramatically influenced spikelet morphogenesis leading to extra glume-like structures, open hull, and abnormal numbers of floral organs. Furthermore, overexpression lines accumulated higher JA levels in spikelets and developing seeds. Expression studies uncovered altered expression of JA biosynthesis/signaling and MADS box genes in overexpression lines compared to WT. Yeast two-hybrid and pull-down assays revealed that OsJAZ11 interacts with OsMADS29 and OsMADS68. Remarkably, expression of OsGW7, a key negative regulator of grain size, was significantly reduced in overexpression lines. We propose that OsJAZ11 participates in the regulation of seed size and spikelet development by coordinating the expression of JA-related, OsGW7 and MADS genes.

12.
Plant Cell Rep ; 41(1): 33-51, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34402946

RESUMO

Plants strive for phosphorus (P), which is an essential mineral for their life. Since P availability is limiting in most of the world's soils, plants have evolved with a complex network of genes and their regulatory mechanisms to cope with soil P deficiency. Among them, purple acid phosphatases (PAPs) are predominantly associated with P remobilization within the plant and acquisition from the soil by hydrolyzing organic P compounds. P in such compounds remains otherwise unavailable to plants for assimilation. PAPs are ubiquitous in plants, and similar enzymes exist in bacteria, fungi, mammals, and unicellular eukaryotes, but having some differences in their catalytic center. In the recent past, PAPs' roles have been extended to multiple plant processes like flowering, seed development, senescence, carbon metabolism, response to biotic and abiotic stresses, signaling, and root development. While new functions have been assigned to PAPs, the underlying mechanisms remained understood poorly. Here, we review the known functions of PAPs, the regulatory mechanisms, and their relevance in crop improvement for P-use-efficiency. We then discuss the mechanisms behind their functions and propose areas worthy of future research. Finally, we argue that PAPs could be a potential target for improving P utilization in crops. In turn, this is essential for sustainable agriculture.


Assuntos
Fosfatase Ácida/genética , Produção Agrícola , Produtos Agrícolas/genética , Fosfatos/metabolismo , Proteínas de Plantas/genética , Fosfatase Ácida/metabolismo , Produtos Agrícolas/metabolismo , Fósforo/metabolismo , Proteínas de Plantas/metabolismo
13.
Plant Cell Environ ; 45(3): 677-694, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34854103

RESUMO

Root hairs represent a beneficial agronomic trait to potentially reduce fertilizer and irrigation inputs. Over the past decades, research in the plant model Arabidopsis thaliana has provided insights into root hair development, the underlying genetic framework and the integration of environmental cues within this framework. Recent years have seen a paradigm shift, where studies are now highlighting conservation and diversification of root hair developmental programs in other plant species and the agronomic relevance of root hairs in a wider ecological context. In this review, we specifically discuss the molecular evolution of the RSL (RHD Six-Like) pathway that controls root hair development and growth in land plants. We also discuss how root hairs contribute to plant performance as an active physiological rooting structure by performing resource acquisition, providing anchorage and constructing the rhizosphere with desirable physical, chemical and biological properties. Finally, we outline future research directions that can help achieve the potential of root hairs in developing sustainable agroecosystems.


Assuntos
Arabidopsis , Raízes de Plantas , Arabidopsis/metabolismo , Produção Agrícola , Fenótipo , Raízes de Plantas/metabolismo , Rizosfera
14.
Plant Physiol Biochem ; 168: 105-115, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34628172

RESUMO

Membrane lipid remodeling helps in the efficient utilization of phosphorus (P) by replacing phospholipids with galactolipids during P deficiency. Previous studies have shown lipid remodeling in rice under P deficiency; however, main lipid classes did not show association with superior P-use-efficiency in rice genotypes. Here, diverse rice genotypes were extensively phenotyped in normal (NP) and low P (LP) conditions. Based on the phenotypic response to P deficiency, genotypes were identified as tolerant and sensitive. Further, bulks were generated differing in their physiological P-use-efficiency (PPUE) during LP condition. Shoot lipidome profiling of genotypes was performed and used to correlate the abundance of various lipid classes and their constituent species with the PPUE of the genotypes. Lipid remodeling was observed as a P-starvation-induced response in all the genotypes. However, neither total galacto- and phospholipids nor the lipid classes correlated with PPUE during P deficiency. However, the difference in PPUE in the two bulks correlated with specific lipid species of galactolipids (DGDG, MGDG). Further, DGDG34:3 had the highest Mol% among the differentially accumulated lipid species between the two bulks. Our study reveals the importance of specific galactolipids species in rice adaptation to P deficient soils and thus opens new targets for future research.


Assuntos
Galactolipídeos , Oryza , Genótipo , Lipídeos de Membrana , Oryza/genética , Fosfatos , Folhas de Planta
15.
Planta ; 254(1): 8, 2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34143292

RESUMO

MAIN CONCLUSION: OsJAZ11 regulates phosphate homeostasis by suppressing jasmonic acid signaling and biosynthesis in rice roots. Jasmonic Acid (JA) is a key plant signaling molecule which negatively regulates growth processes including root elongation. JAZ (JASMONATE ZIM-DOMAIN) proteins function as transcriptional repressors of JA signaling. Therefore, targeting JA signaling by deploying JAZ repressors may enhance root length in crops. In this study, we overexpressed JAZ repressor OsJAZ11 in rice to alleviate the root growth inhibitory action of JA. OsJAZ11 is a low phosphate (Pi) responsive gene which is transcriptionally regulated by OsPHR2. We report that OsJAZ11 overexpression promoted primary and seminal root elongation which enhanced Pi foraging. Expression studies revealed that overexpression of OsJAZ11 also reduced Pi starvation response (PSR) under Pi limiting conditions. Moreover, OsJAZ11 overexpression also suppressed JA signaling and biosynthesis as compared to wild type (WT). We further demonstrated that the C-terminal region of OsJAZ11 was crucial for stimulating root elongation in overexpression lines. Rice transgenics overexpressing truncated OsJAZ11ΔC transgene (i.e., missing C-terminal region) exhibited reduced root length and Pi uptake. Interestingly, OsJAZ11 also regulates Pi homeostasis via physical interaction with a key Pi sensing protein, OsSPX1. Our study highlights the functional connections between JA and Pi signaling and reveals JAZ repressors as a promising candidate for improving low Pi tolerance of elite rice genotypes.


Assuntos
Oryza , Ciclopentanos , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/metabolismo , Oxilipinas , Fosfatos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo
16.
Curr Genomics ; 22(1): 16-25, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34045921

RESUMO

Rice occupies a pre-eminent position as a food crop in the world. Its production, how- ever, entails up to 3000 liters of water per kilogram of grain produced. Such high demand makes rice prone to drought easily. Sustainable rice cultivation with limited water resources requires the deployment of a suitable strategy for better water use efficiency and improved drought tolerance. Several drought-related genes have been evaluated in rice for their mode of action in conferring drought tolerance. Manipulation of components of abscisic acid signal transduction, stomatal density, deposition of cuticular wax, and protein modification pathways are emerging as priority targets. Gene reprogramming by microRNAs is also being explored to achieve drought tolerance. Genetically dissected Quantitative Trait Loci (QTLs) and their constituent genes are being deployed to develop drought-tolerant rice varieties. Progressive research and challenges include a better understanding of crucial components of drought response and search for new targets and the deployment of improved varieties in the field.

17.
J Biotechnol ; 332: 83-93, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-33794279

RESUMO

Real-time quantitative polymerase chain reaction (RT-qPCR) is the most common approach to quantify changes in gene expression. Appropriate internal reference genes are essential for normalization of data of RT-qPCR. In the present study, we identified suitable reference genes for analysis of gene expression in rice seedlings subjected to different heavy metal stresses such as deficiencies of iron and zinc and toxicities of cobalt, cadmium and nickel. First, from publically available RNA-Seq data we identified 10 candidate genes having stable expression. We also included commonly used house-keeping gene OsUBQ5 (Ubiquitin 5) in our analysis. Expression stability of all the 11 genes was determined by two independent tools, NormFinder and geNorm. Our results show that selected candidate reference genes have higher stability in their expression compared to that of OsUBQ5. Genes with locus ID LOC_Os03g16690, encoding an oxysterol-binding protein (OsOBP) and LOC_Os01g56580, encoding Casein Kinase_1a.3 (OsCK1a.3) were identified to be the most stably expressed reference genes under most of the conditions tested. Finally, the study reveals that it is better to use a specific reference gene for a specific heavy metal stress condition rather than using a common reference gene for multiple heavy metal stress conditions. The reference genes identified here would be very useful for gene expression studies under heavy metal stresses in rice.


Assuntos
Oryza , Expressão Gênica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Oryza/genética , Reação em Cadeia da Polimerase em Tempo Real , Padrões de Referência
18.
Plant Physiol Biochem ; 162: 161-170, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33684775

RESUMO

Drought stress poses a severe threat to grain yield in rice. Our previous report demonstrated the role of OsJAZ9 in potassium homeostasis by modulating Jasmonic Acid (JA) signalling. While both potassium (K) and JA are known to have an important role in drought stress response, JA's repressor, i.e., JAZs' role in drought stress, remains elusive. Here we report that OsJAZ9 plays a critical role in rice water-deficit stress tolerance via influencing JA and ABA signalling. Overexpression of OsJAZ9 led to the enhanced ABA and JA levels. Our data further revealed that exogenous JA application antagonises the ABA-mediated inhibition of seed germination. Further, OsJAZ9 overexpression reduces leaf width and stomata density, leading to lower leaf transpiration rates than WT. This reduced transpiration and higher K content as osmoticum improved the water-deficit stress tolerance in OsJAZ9 overexpression lines. On the contrary, OsJAZ9 RNAi lines displayed enhanced sensitivity towards water-deficit stress. Our data provide new insights on the role of JA signalling repressors in rice response to water-deficit stress.


Assuntos
Oryza , Ácido Abscísico , Secas , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estômatos de Plantas/metabolismo , Estresse Fisiológico , Água/metabolismo
19.
J Exp Bot ; 72(11): 4038-4052, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33471895

RESUMO

Organic acids (OAs) are central to cellular metabolism. Many plant stress responses involve the exudation of OAs at the root-soil interface, which can improve soil mineral acquisition and toxic metal tolerance. Because of their simple structure, the low-molecular-weight OAs are widely studied. We discuss the conventional roles of OAs, and some newly emerging roles in plant stress tolerance. OAs are more versatile in their role in plant stress tolerance and are more efficient chelating agents than other acids, such as amino acids. Root OA exudation is important in soil carbon sequestration. These functions are key processes in combating climate change and helping with more sustainable food production. We briefly review the mechanisms behind enhanced biosynthesis, secretion, and regulation of these activities under different stresses, and provide an outline of the transgenic approaches targeted towards the enhanced production and secretion of OAs. A recurring theme of OAs in plant biology is their role as 'acids' modifying pH, as 'chelators' binding metals, or as 'carbon sources' for microbes. We argue that these multiple functions are key factors for understanding these molecules' important roles in plant stress biology. Finally, we discuss how the functions of OAs in plant stress responses could be used, and identify the important unanswered questions.


Assuntos
Plantas , Poluentes do Solo , Metais , Compostos Orgânicos , Solo
20.
Funct Integr Genomics ; 20(6): 775-786, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32892252

RESUMO

Root hairs (RHs) are single-celled elongated epidermal cells and play a vital role in nutrient absorption, particularly for immobile minerals like phosphorus (P). As an adaptive response to P deficiency, an increase in RH length enhances root-soil contact and absorptive area for P absorption. Genetic variations have been reported for RH length and its response to P deficiency in plants. However, only a few association studies have been conducted to identify genes and genetic loci associated with RH length. Here, we screened desi chickpea accessions for RH length and its plasticity under P deficiency. Further, the genome-wide association study (GWAS) was conducted to identify the genetic loci associated with RH length in P deficient and sufficient conditions. Although high variability was observed in terms of RH length in diverse genotypes, majority of the accessions showed typical response of increase in RH length in low P. Genome-wide association mapping identified many SNPs with significant associations with RH length in P-sufficient and P-deficient conditions. A few candidate genes for RH length in P deficient (SIZ1-like and HAD superfamily protein) and sufficient (RSL2-like and SMAP1-like) conditions were identified which have known roles in RH development and P deficiency response or both. Highly associated loci and candidate genes identified in this study would be useful for genomic-assisted breeding to develop P-efficient chickpea.


Assuntos
Cicer/genética , Estudo de Associação Genômica Ampla , Fosfatos/metabolismo , Locos de Características Quantitativas/genética , Cicer/metabolismo , Genoma de Planta/genética , Genômica , Genótipo , Melhoramento Vegetal , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Polimorfismo de Nucleotídeo Único/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...