Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Mol Biol ; 114(1): 12, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38324222

RESUMO

In plants, asymmetric cell divisions result in distinct cell fates forming large and small daughter cells, adding to the cellular diversity in an organ. SCARECROW (SCR), a GRAS domain-containing transcription factor controls asymmetric periclinal cell divisions in flowering plants by governing radial patterning of ground tissue in roots and cell proliferation in leaves. Though SCR homologs are present across land plant lineages, the current understanding of their role in cellular patterning and leaf development is mostly limited to flowering plants. Our phylogenetic analysis identified three SCR homologs in moss Physcomitrium patens, amongst which PpSCR1 showed highest expression in gametophores and its promoter activity was prominent at the mid-vein and the flanking leaf blade cells pointing towards its role in leaf development. Notably, out of the three SCR homologs, only the ppscr1 knock-out lines developed slender leaves with four times narrower leaf blade and three times thicker mid-vein. Detailed histology studies revealed that slender leaf phenotype is either due to the loss of anticlinal cell divisions or failure of periclinal division suppression in the leaf blade. RNA-Seq analyses revealed that genes responsible for cell division and differentiation are expressed differentially in the mutant. PpSCR1 overexpression lines exhibited significantly wider leaf lamina, further reconfirming the role in leaf development. Together, our data suggests that PpSCR1 is involved in the leaf blade and mid-vein development of moss and that its role in the regulation of cell division and proliferation is ancient and conserved among flowering plants and mosses.


Assuntos
Briófitas , Bryopsida , Magnoliopsida , Filogenia , Divisão Celular , Folhas de Planta
2.
Indian J Tuberc ; 70(3): 286-296, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37562902

RESUMO

Mycobacterium tuberculosis has been the smartest pathogen ever and a challenge to drug development. Its replicative machinery is unique, so targeting the same for killing the pathogen remains a challenge. Our body typically throws out the drugs before they see the bacterium multiply. The pathogen has also learned how to remove drugs from its internal chambers and not allow them to reach their targets. Another strategy for Mtb is the mutation of the targets to reject drug binding and bypass the drug's inhibitory actions. In this review, we tried to explore possible targets on the outer side of the bacterial cell. We have also explored if those targets are promising enough and if there are drugs or inhibitors available. We also discuss the essential proteins and why they remain to be a good target. We concluded that the cell envelope has got a few proteins that can be targeted in isolation or maybe along with other machinery while making the outer environment more conducive for penetration of current drugs or newly proposed drugs.


Assuntos
Mycobacterium tuberculosis , Humanos , Mycobacterium tuberculosis/genética , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Descoberta de Drogas , Proteínas de Bactérias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...