Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Res Notes ; 14(1): 313, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34399833

RESUMO

OBJECTIVES: Aeromonads cause severe diseases in farmed aquatic organisms. Herein, we examined 28 isolates causing disease in farmed aquatic organisms from India (n = 24) and Taiwan (n = 4) to gain insight of their genotypic and phenotypic properties. RESULTS: API 20NE biochemical phenotyping showed ≥ 90% similarity classifying all isolates as Aeromonas hydrophila. 16S rRNA genotyping showed ≥ 98% homology among all isolates with A. sobria (NR119044.1ATCC), A. veronii (MK990549.1), A. caviae (NR029252.1) and A. hydrophila (MG984625.1ATCC) and other reference strains. In contrast, gyrB showed a higher intraspecies diversity (≥ 96%) than 16S rRNA delineating the 28 isolates into three groups. Group-I consisted of seven Indian isolates clustered with A. sobria (MK484163.1ATCC), group-II comprised of five Indian and two Taiwanese isolates clustered with A. veronii AF417626.1ATCC while group-III had 11 Indian and three Taiwanese isolates grouped with A. hydrophila (AY987520.1 and DQ519366.1) reference strains. None of our isolates clustered with A. caviae (AJ868400.1ATCC) reference strain. These findings suggest that A. sobria, A. veronii and A. hydrophila could be the etiological agents of diseases observed in farmed fish and soft-shelled turtles (Pelodiscus sinensis) examined in this study. Overall, our findings accentuate the importance of combining phenotyping with genotyping for correct taxonomic classification of Aeromonas spp. in Aquaculture.


Assuntos
Aeromonas , Aeromonas/genética , Aeromonas hydrophila/genética , Animais , Índia , RNA Ribossômico 16S/genética , Taiwan
2.
J Fish Dis ; 42(6): 835-850, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30851008

RESUMO

The genus Edwardsiella is one of the major causes of fish diseases globally. Herein, we examined 37 isolates from ten different fish species from India, South Korea and Taiwan to gain insight into their phenotypic and genotypic properties, of which 30 were characterized as E. tarda with phenotypic homology estimated at 85.71% based on API-20E biochemical tests. Genotyping using 16S rRNA put all isolates together with E. anguillarum, E. hoshinae, E. tarda, E. piscicida and E. ictaluri reference strains in a monophyletic group. In contrast, the gyrB phylogenetic tree clearly separated E. ictaluri, E. tarda and E. hoshinae reference strains from our isolates and put our isolates into two groups with group I being homologous with the E. anguillarum reference strain while group II was homologous with the E. piscicida reference strain. Hence, our findings point to E. piscicida and E. anguillarum as species infecting different fish species in Asia. Homology of the ompW protein suggested that strains with broad protective coverage could be identified as vaccine candidates. This study underscores the importance of combining genotyping with phenotyping for valid species classification. In addition, it accentuates the importance of phylogenetic comparison of bacterial antigens for identification of potential vaccine candidates.


Assuntos
Edwardsiella/genética , Infecções por Enterobacteriaceae/veterinária , Doenças dos Peixes/microbiologia , Peixes/microbiologia , Animais , Aquicultura , Ásia/epidemiologia , Vacinas Bacterianas , DNA Bacteriano/genética , Surtos de Doenças , Edwardsiella/isolamento & purificação , Edwardsiella tarda/genética , Infecções por Enterobacteriaceae/epidemiologia , Doenças dos Peixes/epidemiologia , Genótipo , Geografia , Índia/epidemiologia , Fenótipo , Filogenia , RNA Ribossômico 16S/genética , Alimentos Marinhos/microbiologia , Análise de Sequência de DNA
3.
Vaccines (Basel) ; 4(4)2016 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-27827990

RESUMO

The use of oral vaccination in finfish has lagged behind injectable vaccines for a long time as oral vaccines fall short of injection vaccines in conferring protective immunity. Biodegradable polymeric nanoparticles (NPs) have shown potential to serve as antigen delivery systems for oral vaccines. In this study the recombinant outer membrane protein A (rOmpA) of Edwardsiella tarda was encapsulated in chitosan NPs (NP-rOmpA) and used for oral vaccination of Labeo fimbriatus. The rOmpA purity was 85%, nanodiameter <500 nm, encapsulation efficiency 60.6%, zeta potential +19.05 mV, and there was an in vitro release of 49% of encapsulated antigen within 48 h post incubation in phosphate-buffered saline. Empty NPs and a non-formulated, inactivated whole cell E. tarda (IWC-ET) vaccine were used as controls. Post-vaccination antibody levels were significantly (p = 0.0458) higher in the NP-rOmpA vaccinated fish (Mean OD450 = 2.430) than in fish vaccinated with inactivated whole cell E. tarda (IWC-ET) vaccine (Mean OD450 = 1.735), which corresponded with post-challenge survival proportions (PCSP) of 73.3% and 48.28% for the NP-rOmpA and IWC-ET groups, respectively. Serum samples from NP-rOmpA-vaccinated fish had a higher inhibition rate for E. tarda growth on tryptic soy agar (TSA) than the IWC-ET group. There was no significant difference (p = 0.989) in PCSPs between fish vaccinated with empty NPs and the unvaccinated control fish, while serum from both groups showed no detectable antibodies against E. tarda. Overall, these data show that the NP-rOmpA vaccine produced higher antibody levels and had superior protection over the IWC-ET vaccine, showing that encapsulating OmpA in chitosan NPs confer improved protection against E. tarda mortality in L. fimbriatus. There is a need to elucidate the possible adjuvant effects of chitosan NPs and the immunological mechanisms of protective immunity induced by OMPs administered orally to fish.

4.
Vaccines (Basel) ; 4(2)2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-27258315

RESUMO

Aeromonas hydrophila is a Gram-negative bacterium that causes high mortality in different fish species and at different growth stages. Although vaccination has significantly contributed to the decline of disease outbreaks in aquaculture, the use of oral vaccines has lagged behind the injectable vaccines due to lack of proven efficacy, that being from primary immunization or by use of boost protocols. In this study, the outer membrane protein W (OmpW) of A. hydrophila was cloned, purified, and encapsulated in poly d,l-lactide-co-glycolic acid (PLGA) nanoparticles (NPs) for oral vaccination of rohu (Labeo rohita Hamilton). The physical properties of PLGA NPs encapsulating the recombinant OmpW (rOmpW) was characterized as having a diameter of 370-375 nm, encapsulation efficiency of 53% and -19.3 mV zeta potential. In vitro release of rOmpW was estimated at 34% within 48 h of incubation in phosphate-buffered saline. To evaluate the efficacy of the NP-rOmpW oral vaccine, two antigen doses were orally administered in rohu with a high antigen (HiAg) dose that had twice the amount of antigens compared to the low antigen (LoAg) dose. Antibody levels obtained after vaccination showed an antigen dose dependency in which fish from the HiAg group had higher antibody levels than those from the LoAg group. The antibody levels corresponded with post challenge survival proportions (PCSPs) and relative percent survival (RPS) in which the HiAg group had a higher PCSP and RPS than the LoAg group. Likewise, the ability to inhibit A. hydrophila growth on trypticase soy agar (TSA) by sera obtained from the HiAg group was higher than that from the LoAg group. Overall, data presented here shows that OmpW orally administered using PLGA NPs is protective against A. hydrophila infection with the level of protective immunity induced by oral vaccination being antigen dose-dependent. Future studies should seek to optimize the antigen dose and duration of oral immunization in rohu in order to induce the highest protection in vaccinated fish.

5.
Res Microbiol ; 163(4): 286-91, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22564558

RESUMO

The gene coding for an outer membrane protein Omp48 of Aeromonas hydrophila isolated from an infected fish was cloned and sequenced. Analysis of nucleotide sequence showed the omp48 gene to be an adhesin encoding a protein of 426 amino acids with high identity to the omp48 gene of Aeromonas veronii, another fish pathogen. The gene belonged to the maltoporin group of porins and had high similarity to LamB porins of A. hydrophila, Aeromonas salmonicida and Vibrio parahaemolyticus. The expressed purified recombinant protein had an estimated molecular weight of 48 kDa. Further, rabbit hyperimmune sera against the recombinant protein reacted with A. hydrophila, Aeromonas sobria and A. veronii whole cell proteins at the region of 48 kDa, in western blotting. The recombinant protein was immunogenic in the fish Labeo rohita Hamilton. Fish immunized with recombinant protein, when challenged with virulent A. hydrophila and another bacterial fish pathogen, Edwardsiella tarda, showed relative percent survivals of 69 and 60, respectively. Our results suggest that Omp48 of A. hydrophila could be used as a potential vaccine candidate for protection not only against A. hydrophila infection, but also against the fish pathogen E. tarda.


Assuntos
Aeromonas hydrophila/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Edwardsiella tarda/imunologia , Doenças dos Peixes/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , Aeromonas hydrophila/classificação , Aeromonas hydrophila/genética , Aeromonas hydrophila/isolamento & purificação , Animais , Proteínas da Membrana Bacteriana Externa/genética , Carpas , Edwardsiella tarda/genética , Doenças dos Peixes/microbiologia , Doenças dos Peixes/prevenção & controle , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/prevenção & controle , Dados de Sequência Molecular , Filogenia , Coelhos , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...