Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Med Chem Lett ; 15(4): 463-469, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38628794

RESUMO

Toward addressing the cardiotoxicity liability associated with the antimalarial drug astemizole (AST, hERG IC50 = 0.0042 µM) and its derivatives, we designed and synthesized analogues based on compound 1 (Pf NF54 IC50 = 0.012 µM; hERG IC50 = 0.63 µM), our previously identified 3-trifluoromethyl-1,2,4-oxadiazole AST analogue. Compound 11 retained in vitro multistage antiplasmodium activity (ABS PfNF54 IC50 = 0.017 µM; gametocytes PfiGc/PfLGc IC50 = 1.24/1.39 µM, and liver-stage PbHepG2 IC50 = 2.30 µM), good microsomal metabolic stability (MLM CLint < 11 µL·min-1·mg-1, EH < 0.33), and solubility (150 µM). It shows a ∼6-fold and >6000-fold higher selectivity against human ether-á-go-go-related gene higher selectively potential over hERG relative to 1 and AST, respectively. Despite the excellent in vitro antiplasmodium activity profile, in vivo efficacy in the Plasmodium berghei mouse infection model was diminished, attributable to suboptimal oral bioavailability (F = 14.9%) at 10 mg·kg-1 resulting from poor permeability (log D7.4 = -0.82). No cross-resistance was observed against 44 common Pf mutant lines, suggesting activity via a novel mechanism of action.

2.
bioRxiv ; 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37425722

RESUMO

The genome engineering capability of the CRISPR/Cas system depends on the DNA repair machinery to generate the final outcome. Several genes can have an impact on mutations created, but their exact function and contribution to the result of the repair are not completely characterised. This lack of knowledge has limited the ability to comprehend and regulate the editing outcomes. Here, we measure how the absence of 21 repair genes changes the mutation outcomes of Cas9-generated cuts at 2,812 synthetic target sequences in mouse embryonic stem cells. Absence of key non-homologous end joining genes Lig4, Xrcc4, and Xlf abolished small insertions and deletions, while disabling key microhomology-mediated repair genes Nbn and Polq reduced frequency of longer deletions. Complex alleles of combined insertion and deletions were preferentially generated in the absence of Xrcc6. We further discover finer structure in the outcome frequency changes for single nucleotide insertions and deletions between large microhomologies that are differentially modulated by the knockouts. We use the knowledge of the reproducible variation across repair milieus to build predictive models of Cas9 editing results that outperform the current standards. This work improves our understanding of DNA repair gene function, and provides avenues for more precise modulation of CRISPR/Cas9-generated mutations.

3.
Cell Host Microbe ; 31(2): 305-319.e10, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36634679

RESUMO

Malaria transmission to mosquitoes requires a developmental switch in asexually dividing blood-stage parasites to sexual reproduction. In Plasmodium berghei, the transcription factor AP2-G is required and sufficient for this switch, but how a particular sex is determined in a haploid parasite remains unknown. Using a global screen of barcoded mutants, we here identify genes essential for the formation of either male or female sexual forms and validate their importance for transmission. High-resolution single-cell transcriptomics of ten mutant parasites portrays the developmental bifurcation and reveals a regulatory cascade of putative gene functions in the determination and subsequent differentiation of each sex. A male-determining gene with a LOTUS/OST-HTH domain as well as the protein interactors of a female-determining zinc-finger protein indicate that germ-granule-like ribonucleoprotein complexes complement transcriptional processes in the regulation of both male and female development of a malaria parasite.


Assuntos
Culicidae , Malária , Parasitos , Animais , Feminino , Masculino , Parasitos/metabolismo , Malária/parasitologia , Plasmodium berghei/genética , Desenvolvimento Sexual/genética , Culicidae/parasitologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
4.
Wellcome Open Res ; 5: 71, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32500098

RESUMO

The rodent parasite Plasmodium chabaudi is an important in vivo model of malaria. The ability to produce chronic infections makes it particularly useful for investigating the development of anti- Plasmodium immunity, as well as features associated with parasite virulence during both the acute and chronic phases of infection. P. chabaudi also undergoes asexual maturation (schizogony) and erythrocyte invasion in culture, so offers an experimentally-amenable in vivo to in vitro model for studying gene function and drug activity during parasite replication. To extend the usefulness of this model, we have further optimised transfection protocols and plasmids for P. chabaudi and generated stable, fluorescent lines that are free from drug-selectable marker genes. These mother-lines show the same infection dynamics as wild-type parasites throughout the lifecycle in mice and mosquitoes; furthermore, their virulence can be increased by serial blood passage and reset by mosquito transmission. We have also adapted the large-insert, linear PlasmoGEM vectors that have revolutionised the scale of experimental genetics in another rodent malaria parasite and used these to generate barcoded P. chabaudi gene-deletion and -tagging vectors for transfection in our fluorescent P. chabaudi mother-lines. This produces a tool-kit of P. chabaudi lines, vectors and transfection approaches that will be of broad utility to the research community.

5.
PLoS Pathog ; 14(11): e1007436, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30496294

RESUMO

Invasion of human erythrocytes is essential for Plasmodium falciparum parasite survival and pathogenesis, and is also a complex phenotype. While some later steps in invasion appear to be invariant and essential, the earlier steps of recognition are controlled by a series of redundant, and only partially understood, receptor-ligand interactions. Reverse genetic analysis of laboratory adapted strains has identified multiple genes that when deleted can alter invasion, but how the relative contributions of each gene translate to the phenotypes of clinical isolates is far from clear. We used a forward genetic approach to identify genes responsible for variable erythrocyte invasion by phenotyping the parents and progeny of previously generated experimental genetic crosses. Linkage analysis using whole genome sequencing data revealed a single major locus was responsible for the majority of phenotypic variation in two invasion pathways. This locus contained the PfRh2a and PfRh2b genes, members of one of the major invasion ligand gene families, but not widely thought to play such a prominent role in specifying invasion phenotypes. Variation in invasion pathways was linked to significant differences in PfRh2a and PfRh2b expression between parasite lines, and their role in specifying alternative invasion was confirmed by CRISPR-Cas9-mediated genome editing. Expansion of the analysis to a large set of clinical P. falciparum isolates revealed common deletions, suggesting that variation at this locus is a major cause of invasion phenotypic variation in the endemic setting. This work has implications for blood-stage vaccine development and will help inform the design and location of future large-scale studies of invasion in clinical isolates.


Assuntos
Eritrócitos/parasitologia , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Animais , Anticorpos Antiprotozoários/imunologia , Proteínas de Transporte/metabolismo , Testes Genéticos/métodos , Humanos , Ligantes , Fenótipo , Proteínas de Protozoários/metabolismo , Reticulócitos/metabolismo
6.
Proc Natl Acad Sci U S A ; 115(17): 4477-4482, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29632205

RESUMO

Malaria-causing Plasmodium sporozoites are deposited in the dermis by the bite of an infected mosquito and move by gliding motility to the liver where they invade and develop within host hepatocytes. Although extracellular interactions between Plasmodium sporozoite ligands and host receptors provide important guidance cues for productive infection and are good vaccine targets, these interactions remain largely uncharacterized. Thrombospondin-related anonymous protein (TRAP) is a parasite cell surface ligand that is essential for both gliding motility and invasion because it couples the extracellular binding of host receptors to the parasite cytoplasmic actinomyosin motor; however, the molecular nature of the host TRAP receptors is poorly defined. Here, we use a systematic extracellular protein interaction screening approach to identify the integrin αvß3 as a directly interacting host receptor for Plasmodium falciparum TRAP. Biochemical characterization of the interaction suggests a two-site binding model, requiring contributions from both the von Willebrand factor A domain and the RGD motif of TRAP for integrin binding. We show that TRAP binding to cells is promoted in the presence of integrin-activating proadhesive Mn2+ ions, and that cells genetically targeted so that they lack cell surface expression of the integrin αv-subunit are no longer able to bind TRAP. P. falciparum sporozoites moved with greater speed in the dermis of Itgb3-deficient mice, suggesting that the interaction has a role in sporozoite migration. The identification of the integrin αvß3 as the host receptor for TRAP provides an important demonstration of a sporozoite surface ligand that directly interacts with host receptors.


Assuntos
Integrina alfaVbeta3/metabolismo , Modelos Biológicos , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Esporozoítos/metabolismo , Animais , Células HEK293 , Humanos , Integrina alfaVbeta3/genética , Camundongos , Camundongos Knockout , Plasmodium falciparum/genética , Plasmodium falciparum/patogenicidade , Proteínas de Protozoários/genética , Esporozoítos/genética
7.
Cell ; 170(2): 260-272.e8, 2017 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-28708996

RESUMO

The genomes of malaria parasites contain many genes of unknown function. To assist drug development through the identification of essential genes and pathways, we have measured competitive growth rates in mice of 2,578 barcoded Plasmodium berghei knockout mutants, representing >50% of the genome, and created a phenotype database. At a single stage of its complex life cycle, P. berghei requires two-thirds of genes for optimal growth, the highest proportion reported from any organism and a probable consequence of functional optimization necessitated by genomic reductions during the evolution of parasitism. In contrast, extreme functional redundancy has evolved among expanded gene families operating at the parasite-host interface. The level of genetic redundancy in a single-celled organism may thus reflect the degree of environmental variation it experiences. In the case of Plasmodium parasites, this helps rationalize both the relative successes of drugs and the greater difficulty of making an effective vaccine.


Assuntos
Genoma de Protozoário , Plasmodium berghei/crescimento & desenvolvimento , Plasmodium berghei/genética , Animais , Evolução Biológica , Feminino , Técnicas de Inativação de Genes , Genes Essenciais , Interações Hospedeiro-Parasita , Redes e Vias Metabólicas , Camundongos , Camundongos Endogâmicos BALB C , Plasmodium berghei/metabolismo , Saccharomyces cerevisiae/genética , Toxoplasma/genética , Trypanosoma brucei brucei/genética
8.
Cell Host Microbe ; 17(3): 404-413, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25732065

RESUMO

The genome-wide identification of gene functions in malaria parasites is hampered by a lack of reverse genetic screening methods. We present a large-scale resource of barcoded vectors with long homology arms for effective modification of the Plasmodium berghei genome. Cotransfecting dozens of vectors into the haploid blood stages creates complex pools of barcoded mutants, whose competitive fitness can be measured during infection of a single mouse using barcode sequencing (barseq). To validate the utility of this resource, we rescreen the P. berghei kinome, using published kinome screens for comparison. We find that several protein kinases function redundantly in asexual blood stages and confirm the targetability of kinases cdpk1, gsk3, tkl3, and PBANKA_082960 by genotyping cloned mutants. Thus, parallel phenotyping of barcoded mutants unlocks the power of reverse genetic screening for a malaria parasite and will enable the systematic identification of genes essential for in vivo parasite growth and transmission.


Assuntos
Testes Genéticos/métodos , Vetores Genéticos , Genética Microbiana/métodos , Plasmodium berghei/genética , Genética Reversa/métodos , Animais , Malária/parasitologia , Malária/veterinária , Camundongos , Plasmodium berghei/enzimologia , Plasmodium berghei/fisiologia , Proteínas Quinases/genética , Proteínas Quinases/metabolismo
9.
Nucleic Acids Res ; 43(Database issue): D1176-82, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25593348

RESUMO

The Plasmodium Genetic Modification (PlasmoGEM) database (http://plasmogem.sanger.ac.uk) provides access to a resource of modular, versatile and adaptable vectors for genome modification of Plasmodium spp. parasites. PlasmoGEM currently consists of >2000 plasmids designed to modify the genome of Plasmodium berghei, a malaria parasite of rodents, which can be requested by non-profit research organisations free of charge. PlasmoGEM vectors are designed with long homology arms for efficient genome integration and carry gene specific barcodes to identify individual mutants. They can be used for a wide array of applications, including protein localisation, gene interaction studies and high-throughput genetic screens. The vector production pipeline is supported by a custom software suite that automates both the vector design process and quality control by full-length sequencing of the finished vectors. The PlasmoGEM web interface allows users to search a database of finished knock-out and gene tagging vectors, view details of their designs, download vector sequence in different formats and view available quality control data as well as suggested genotyping strategies. We also make gDNA library clones and intermediate vectors available for researchers to produce vectors for themselves.


Assuntos
Bases de Dados Genéticas , Plasmodium berghei/genética , Vetores Genéticos , Genoma de Protozoário , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Internet , Mutação , Plasmídeos , Plasmodium/genética , Software
10.
J Gen Virol ; 90(Pt 7): 1702-1712, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19264613

RESUMO

Human parechoviruses (HPeVs) are frequent pathogens with a seroprevalence of over 90% in adults. Recent studies on these viruses have increased the number of HPeV types to eight. Here we analyse the complete genome of one clinical isolate, PicoBank/HPeV1/a, and VP1 and 3D protein sequences of PicoBank/HPeV6/a, isolated from the same individual 13 months later. PicoBank/HPeV1/a is closely related to other recent HPeV1 isolates but is distinct from the HPeV1 Harris prototype isolated 50 years ago. The availability of an increasing number of HPeV sequences has allowed a detailed analysis of these viruses. The results add weight to the observations that recombination plays a role in the generation of HPeV diversity. An important finding is the presence of unexpected conservation of codons utilized in part of the 3D-encoding region, some of which can be explained by the presence of a phylogenetically conserved predicted secondary structure domain. This suggests that in addition to the cis-acting replication element, RNA secondary structure domains in coding regions play a key role in picornavirus replication.


Assuntos
Evolução Molecular , Genoma Viral , Parechovirus/genética , Sequência de Aminoácidos , Sequência de Bases , Criança , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Parechovirus/isolamento & purificação , Filogenia , Infecções por Picornaviridae/virologia , Polimorfismo Genético , RNA Viral/genética , Recombinação Genética , Alinhamento de Sequência , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...