Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202403116, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38646964

RESUMO

Handedness is an essential attribute of chiral nanocrystals, having a major influence on their properties. During chemical growth, the handedness of nanocrystals is usually tuned by selecting the corresponding enantiomer of chiral molecules involved in asymmetric growth, often known as chiral inducers. We report that, even using the same chiral inducer enantiomer, the handedness of chiral gold nanocrystals can be reversed by using Au nanorod seeds with either single crystalline or pentatwinned structure. This effect holds for chiral growth induced both by amino acids and by chiral micelles. Although it was challenging to discern the morphological handedness for L-cystine-directed particles, even using electron tomography, both cases showed circular dichroism bands of opposite sign, with nearly mirrored chiroptical signatures for chiral micelle-directed growth, along with quasi-helical wrinkles of inverted handedness. These results expand the chiral growth toolbox with an effect that might be exploited to yield a host of interesting morphologies with tunable optical properties.

2.
ACS Nano ; 18(18): 12010-12019, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38669197

RESUMO

Chirality in gold nanostructures offers an exciting opportunity to tune their differential optical response to left- and right-handed circularly polarized light, as well as their interactions with biomolecules and living matter. However, tuning and understanding such interactions demands quantification of the structural features that are responsible for the chiral behavior. Electron tomography (ET) enables structural characterization at the single-particle level and has been used to quantify the helicity of complex chiral nanorods. However, the technique is time-consuming and consequently lacks statistical value. To address this issue, we introduce herein a high-throughput methodology that combines images acquired by secondary electron-based electron beam-induced current (SEEBIC) with quantitative image analysis. As a result, the geometric chirality of hundreds of nanoparticles can be quantified in less than 1 h. When combining the drastic gain in data collection efficiency of SEEBIC with a limited number of ET data sets, a better understanding of how the chiral structure of individual chiral nanoparticles translates into the ensemble chiroptical response can be reached.

3.
Acc Chem Res ; 56(21): 3023-3032, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37874852

RESUMO

ConspectusThe value of operando and in situ characterization methodologies for understanding electrochemical systems under operation can be inferred from the upsurge of studies that have reported mechanistic insights into electrocatalytic processes based on such measurements. Despite the widespread availability of performing dynamic experiments nowadays, these techniques are in their infancy because the complexity of the experimental design and the collection and analysis of data remain challenging, effectively necessitating future developments. It is also due to their extensive use that a dedicated modus operandi for acquiring dynamic electrocatalytic information is imperative. In this Account, we focus on the work of our laboratory on electrochemical liquid-phase transmission electron microscopy (ec-LPTEM) to understand the transformation/activation of state-of-the-art nanocatalysts for the oxygen evolution reaction (OER), oxygen reduction reaction (ORR), and CO2 electroreduction (CO2ER). We begin by describing the development of electrochemical microcells for TEM studies, highlighting the importance of tailoring the system to each electrochemical process to obtain reliable results. Starting with the anodic OER for alkaline electrolyzers, we demonstrate the capability of real-time monitoring of the electrowetting behavior of Co-based oxide catalysts and detail the fascinating insights gained into solid-liquid interfaces for the reversible surface reconstruction of the catalystic surfaces and their degradation processes. Importantly, in the case of the OER, we report the exceptional capacity of ec-LPTEM to probe gaseous products and therefore resolve solid-liquid-gas phenomena. Moving toward the cathodic ORR for fuel cells, we summarize studies that pertain to the evaluation of the degradation mechanisms of Pt nanoparticles and discuss the issues with performing real-time measurements on realistic catalyst layers that are composed of the carbon support, ionomer network, and Pt nanocatalysts. For the most cathodic CO2ER, we first discuss the challenges of spatiotemporal data collection in microcells under these negative potentials. We then show that control over the electrochemical stimuli is critical for determining the mechanism of restructuring/dissolution of Cu nanospheres, either for focusing on the first stages of the reaction or for start/stop operation studies. Finally, we close this Account with the possible evolution in the way we visualize electrochemical processes with ec-LPTEM and emphasize the need for studies that bridge the scales with the ultimate goal of fully evaluating the impact of the insights obtained from the in situ-monitored processes on the operability of electrocatalytic devices.

4.
Nat Catal ; 6(5): 383-391, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37252670

RESUMO

Catalyst layers in proton exchange membrane fuel cells consist of platinum-group-metal nanocatalysts supported on carbon aggregates, forming a porous structure through which an ionomer network percolates. The local structural character of these heterogeneous assemblies is directly linked to the mass-transport resistances and subsequent cell performance losses; its three-dimensional visualization is therefore of interest. Herein we implement deep-learning-aided cryogenic transmission electron tomography for image restoration, and we quantitatively investigate the full morphology of various catalyst layers at the local-reaction-site scale. The analysis enables computation of metrics such as the ionomer morphology, coverage and homogeneity, location of platinum on the carbon supports, and platinum accessibility to the ionomer network, with the results directly compared and validated with experimental measurements. We expect that our findings and methodology for evaluating catalyst layer architectures will contribute towards linking the morphology to transport properties and overall fuel cell performance.

5.
J Am Chem Soc ; 145(14): 7845-7858, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36988435

RESUMO

Non-noble metal catalysts (NNMCs) hold the potential to replace the expensive Pt-based materials currently used to speed up the oxygen reduction reaction (ORR) in proton exchange membrane fuel cell (PEMFC) cathodes, but they feature poor durability that inhibits their implementation in commercial PEMFCs. This performance decay is commonly ascribed to the operative demetallation of their ORR-active sites, the electro-oxidation of the carbonaceous matrix that hosts these active centers, and/or the chemical degradation of the ionomer, active sites, and/or carbon support by radicals derived from the H2O2 produced as an ORR by-product. However, little is known regarding the relative contributions of these mechanisms to the overall PEMFC performance loss. With this motivation, in this study, we combined four degradation protocols entailing different cathode gas feeds (i.e., air vs N2), potential hold values, and durations to decouple the relative impact of the above deactivation mechanisms to the overall performance decay. Our results indicate that H2O2-related instability does not depend on the operative voltage but only on the ORR charge. Moreover, the electro-oxidation of the carbon matrix at high potentials (which for the catalyst tested herein triggers at 0.7 V) seems to be more detrimental to the NNMCs' activity than the demetallation occurring at low potentials.

6.
Chem Commun (Camb) ; 58(63): 8854-8857, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35851630

RESUMO

Water management by gas diffusion electrodes is a fundamental aspect of the performance of electrochemical cells. Herein, we introduce the characteristic constrictions size as a descriptor for microporous layers (MPL). This parameter is calculated by volumetric analysis of focused ion beam nanotomography and compared to mercury intrusion porosimetry measurements.

7.
Microsc Microanal ; 25(6): 1304-1310, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31647046

RESUMO

Electrochemical liquid cell transmission electron microscopy (TEM) is a unique technique for probing nanocatalyst behavior during operation for a range of different electrocatalytic processes, including hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (ORR), or electrochemical CO2 reduction (eCO2R). A major challenge to the technique's applicability to these systems has to do with the choice of substrate, which requires a wide inert potential range for quantitative electrochemistry, and is also responsible for minimizing background gas generation in the confined microscale environment. Here, we report on the feasibility of electrochemical experiments using the standard redox couple Fe(CN)63-/4- and microchips featuring carbon-coated electrodes. We electrochemically assess the in situ performance with respect to flow rate, liquid volume, and scan rate. Equally important with the choice of working substrate is the choice of the reference electrode. We demonstrate that the use of a modified electrode setup allows for potential measurements relatable to bulk studies. Furthermore, we use this setup to demonstrate the inert potential range for carbon-coated electrodes in aqueous electrolytes for HER, OER, ORR, and eCO2R. This work provides a basis for understanding electrochemical measurements in similar microscale systems and for studying gas-generating reactions with liquid electrochemical TEM.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...