Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nat Aging ; 3(9): 1057-1066, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37653255

RESUMO

Aging compromises hematopoietic and immune system functions, making older adults especially susceptible to hematopoietic failure, infections and tumor development, and thus representing an important medical target for a broad range of diseases. During aging, hematopoietic stem cells (HSCs) lose their blood reconstitution capability and commit preferentially toward the myeloid lineage (myeloid bias)1,2. These processes are accompanied by an aberrant accumulation of mitochondria in HSCs3. The administration of the mitochondrial modulator urolithin A corrects mitochondrial function in HSCs and completely restores the blood reconstitution capability of 'old' HSCs. Moreover, urolithin A-supplemented food restores lymphoid compartments, boosts HSC function and improves the immune response against viral infection in old mice. Altogether our results demonstrate that boosting mitochondrial recycling reverts the aging phenotype in the hematopoietic and immune systems.


Assuntos
Envelhecimento , Sistema Imunitário , Animais , Camundongos , Alimentos Fortificados , Células-Tronco Hematopoéticas , Mitocôndrias
3.
PLoS Genet ; 17(8): e1009752, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34411092

RESUMO

The cilium, the sensing centre for the cell, displays an extensive repertoire of receptors for various cell signalling processes. The dynamic nature of ciliary signalling indicates that the ciliary entry of receptors and associated proteins must be regulated and conditional. To understand this process, we studied the ciliary localisation of the odour-receptor coreceptor (Orco), a seven-pass transmembrane protein essential for insect olfaction. Little is known about when and how Orco gets into the cilia. Here, using Drosophila melanogaster, we show that the bulk of Orco selectively enters the cilia on adult olfactory sensory neurons in two discrete, one-hour intervals after eclosion. A conditional loss of heterotrimeric kinesin-2 during this period reduces the electrophysiological response to odours and affects olfactory behaviour. We further show that Orco binds to the C-terminal tail fragments of the heterotrimeric kinesin-2 motor, which is required to transfer Orco from the ciliary base to the outer segment and maintain within an approximately four-micron stretch at the distal portion of the ciliary outer-segment. The Orco transport was not affected by the loss of critical intraflagellar transport components, IFT172/Oseg2 and IFT88/NompB, respectively, during the adult stage. These results highlight a novel developmental regulation of seven-pass transmembrane receptor transport into the cilia and indicate that ciliary signalling is both developmentally and temporally regulated.


Assuntos
Cílios/metabolismo , Proteínas de Drosophila/metabolismo , Cinesinas/metabolismo , Receptores Odorantes/metabolismo , Animais , Transporte Biológico , Proteínas de Transporte/metabolismo , Cílios/genética , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/metabolismo , Cinesinas/fisiologia , Bulbo Olfatório/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Transporte Proteico , Receptores Odorantes/fisiologia , Olfato
4.
Int J Mol Sci ; 21(21)2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33153113

RESUMO

Hematopoietic stem cells (HSCs) are responsible for life-long production of all mature blood cells. Under homeostasis, HSCs in their native bone marrow niches are believed to undergo asymmetric cell divisions (ACDs), with one daughter cell maintaining HSC identity and the other committing to differentiate into various mature blood cell types. Due to the lack of key niche signals, in vitro HSCs differentiate rapidly, making it challenging to capture and study ACD. To overcome this bottleneck, in this study, we used interferon alpha (IFNα) treatment to "pre-instruct" HSC fate directly in their native niche, and then systematically studied the fate of dividing HSCs in vitro at the single cell level via time-lapse analysis, as well as multigene and protein expression analysis. Triggering HSCs' exit from dormancy via IFNα was found to significantly increase the frequency of asynchronous divisions in paired daughter cells (PDCs). Using single-cell gene expression analyses, we identified 12 asymmetrically expressed genes in PDCs. Subsequent immunocytochemistry analysis showed that at least three of the candidates, i.e., Glut1, JAM3 and HK2, were asymmetrically distributed in PDCs. Functional validation of these observations by colony formation assays highlighted the implication of asymmetric distribution of these markers as hallmarks of HSCs, for example, to reliably discriminate committed and self-renewing daughter cells in dividing HSCs. Our data provided evidence for the importance of in vivo instructions in guiding HSC fate, especially ACD, and shed light on putative molecular players involved in this process. Understanding the mechanisms of cell fate decision making should enable the development of improved HSC expansion protocols for therapeutic applications.


Assuntos
Divisão Celular Assimétrica/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/fisiologia , Interferon-alfa/farmacologia , Animais , Divisão Celular Assimétrica/genética , Divisão Celular Assimétrica/fisiologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem da Célula/efeitos dos fármacos , Linhagem da Célula/genética , Células Cultivadas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Interferon-alfa/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Análise de Célula Única
5.
Int J Mol Sci ; 21(17)2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32899421

RESUMO

Steady hematopoiesis is essential for lifelong production of all mature blood cells. Hematopoietic stem and progenitor cells (HSPCs) found in the bone marrow ensure hematopoietic homeostasis in an organism. Failure of this complex process, which involves a fine balance of self-renewal and differentiation fates, often result in severe hematological conditions such as leukemia and lymphoma. Several molecular and metabolic programs, internal or in close interaction with the bone marrow niche, have been identified as important regulators of HSPC function. More recently, nutrient sensing pathways have emerged as important modulators of HSC homing, dormancy, and function in the bone marrow. Here we describe a method for reliable measurement of various amino acids and minerals in different rare bone marrow (BM) populations, namely HSPCs. We found that the amino acid profile of the most primitive hematopoietic compartments (KLS) did not differ significantly from the one of their direct progenies (common myeloid progenitor CMP), while granulocyte-monocyte progenitors (GMPs), on the opposite of megakaryocyte-erythroid progenitors (MEPs), have higher content of the majority of amino acids analyzed. Additionally, we identified intermediates of the urea cycle to be differentially expressed in the KLS population and were found to lower mitochondrial membrane potential, an established readout on self-renewal capability. Moreover, we were able to profile for the first time 12 different minerals and detect differences in elemental contents between different HSPC compartments. Importantly, essential dietary trace elements, such as iron and molybdenum, were found to be enriched in granulocyte-monocyte progenitors (GMPs). We envision this amino acid and mineral profiling will allow identification of novel metabolic and nutrient sensing pathways important in HSPC fate regulation.


Assuntos
Aminoácidos/análise , Medula Óssea/metabolismo , Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Minerais/análise , Animais , Medula Óssea/crescimento & desenvolvimento , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Feminino , Células-Tronco Hematopoéticas/citologia , Camundongos
6.
Anal Chem ; 92(13): 8750-8758, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32460479

RESUMO

We developed and validated a reliable, robust, and easy-to-implement quantitative method for multielemental analysis of low-volume samples. Our ICP-MS-based method comprises the analysis of 20 elements (Mg, P, S, K, Ca, V, Cr, Mn, Fe, Co, Cu, Zn, Se, Br, Rb, Sr, Mo, I, Cs, and Ba) in 10 µL of serum and 12 elements (Mg, S, Mn, Fe, Co, Cu, Zn Se, Br, Rb, Mo, and Cs) in less than 250 000 cells. As a proof-of-concept, we analyzed the elemental profiles of serum and sorted immune T cells derived from naïve and tumor-bearing mice. The results indicate a tumor systemic effect on the elemental profiles of both serum and T cells. Our approach highlights promising applications of multielemental analysis in precious samples such as rare cell populations or limited volumes of biofluids that could provide a deeper understanding of the essential role of elements as cofactors in biological and pathological processes.


Assuntos
Compostos Inorgânicos/análise , Espectrometria de Massas/métodos , Neoplasias/química , Animais , Linhagem Celular Tumoral , Cobre/análise , Cobre/sangue , Compostos Inorgânicos/sangue , Limite de Detecção , Magnésio/análise , Magnésio/sangue , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/patologia , Linfócitos T/química , Linfócitos T/citologia , Linfócitos T/metabolismo , Transplante Homólogo , Zinco/análise , Zinco/sangue
8.
Cell Stem Cell ; 24(3): 405-418.e7, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30849366

RESUMO

It has been recently shown that increased oxidative phosphorylation, as reflected by increased mitochondrial activity, together with impairment of the mitochondrial stress response, can severely compromise hematopoietic stem cell (HSC) regeneration. Here we show that the NAD+-boosting agent nicotinamide riboside (NR) reduces mitochondrial activity within HSCs through increased mitochondrial clearance, leading to increased asymmetric HSC divisions. NR dietary supplementation results in a significantly enlarged pool of progenitors, without concurrent HSC exhaustion, improves survival by 80%, and accelerates blood recovery after murine lethal irradiation and limiting-HSC transplantation. In immune-deficient mice, NR increased the production of human leucocytes from hCD34+ progenitors. Our work demonstrates for the first time a positive effect of NAD+-boosting strategies on the most primitive blood stem cells, establishing a link between HSC mitochondrial stress, mitophagy, and stem-cell fate decision, and unveiling the potential of NR to improve recovery of patients suffering from hematological failure including post chemo- and radiotherapy.


Assuntos
Hematopoese , Células-Tronco Hematopoéticas/citologia , Mitocôndrias/metabolismo , NAD/metabolismo , Niacinamida/análogos & derivados , Animais , Células Cultivadas , Células-Tronco Hematopoéticas/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Niacinamida/metabolismo , Compostos de Piridínio
9.
J Vis Exp ; (154)2019 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-31929504

RESUMO

A fine balance of quiescence, self-renewal, and differentiation is key to preserve the hematopoietic stem cell (HSC) pool and maintain lifelong production of all mature blood cells. In recent years cellular metabolism has emerged as a crucial regulator of HSC function and fate. We have previously demonstrated that modulation of mitochondrial metabolism influences HSC fate. Specifically, by chemically uncoupling the electron transport chain we were able to maintain HSC function in culture conditions that normally induce rapid differentiation. However, limiting HSC numbers often precludes the use of standard assays to measure HSC metabolism and therefore predict their function. Here, we report a simple flow cytometry assay that allows reliable measurement of mitochondrial membrane potential and mitochondrial mass in scarce cells such as HSCs. We discuss the isolation of HSCs from mouse bone marrow and measurement of mitochondrial mass and membrane potential post ex vivo culture. As an example, we show the modulation of these parameters in HSCs via treatment with a metabolic modulator. Moreover, we extend the application of this methodology on human peripheral blood-derived T cells and human tumor infiltrating lymphocytes (TILs), showing dramatic differences in their mitochondrial profiles, possibly reflecting different T cell functionality. We believe this assay can be employed in screenings to identify modulators of mitochondrial metabolism in various cell types in different contexts.


Assuntos
Citometria de Fluxo/métodos , Células-Tronco Hematopoéticas/ultraestrutura , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Linfócitos T/ultraestrutura , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL
10.
Nat Commun ; 8(1): 593, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28928446

RESUMO

Group 2 innate lymphoid cells (ILC2s) are involved in human diseases, such as allergy, atopic dermatitis and nasal polyposis, but their function in human cancer remains unclear. Here we show that, in acute promyelocytic leukaemia (APL), ILC2s are increased and hyper-activated through the interaction of CRTH2 and NKp30 with elevated tumour-derived PGD2 and B7H6, respectively. ILC2s, in turn, activate monocytic myeloid-derived suppressor cells (M-MDSCs) via IL-13 secretion. Upon treating APL with all-trans retinoic acid and achieving complete remission, the levels of PGD2, NKp30, ILC2s, IL-13 and M-MDSCs are restored. Similarly, disruption of this tumour immunosuppressive axis by specifically blocking PGD2, IL-13 and NKp30 partially restores ILC2 and M-MDSC levels and results in increased survival. Thus, using APL as a model, we uncover a tolerogenic pathway that may represent a relevant immunosuppressive, therapeutic targetable, mechanism operating in various human tumour types, as supported by our observations in prostate cancer.Group 2 innate lymphoid cells (ILC2s) modulate inflammatory and allergic responses, but their function in cancer immunity is still unclear. Here the authors show that, in acute promyelocytic leukaemia, tumour-activated ILC2s secrete IL-13 to induce myeloid-derived suppressor cells and support tumour growth.


Assuntos
Antígenos B7/imunologia , Linfócitos/imunologia , Células Supressoras Mieloides/imunologia , Receptor 3 Desencadeador da Citotoxicidade Natural/imunologia , Prostaglandina D2/imunologia , Células A549 , Animais , Antineoplásicos/uso terapêutico , Antígenos B7/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Células HL-60 , Células Hep G2 , Humanos , Imunidade Inata/imunologia , Interleucina-13/imunologia , Interleucina-13/metabolismo , Leucemia Promielocítica Aguda/tratamento farmacológico , Leucemia Promielocítica Aguda/imunologia , Leucemia Promielocítica Aguda/metabolismo , Linfócitos/metabolismo , Camundongos Endogâmicos C57BL , Células Supressoras Mieloides/metabolismo , Receptor 3 Desencadeador da Citotoxicidade Natural/metabolismo , Prostaglandina D2/metabolismo , Ligação Proteica , Tretinoína/uso terapêutico
11.
Nat Commun ; 8(1): 221, 2017 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-28790449

RESUMO

The in vitro expansion of long-term hematopoietic stem cells (HSCs) remains a substantial challenge, largely because of our limited understanding of the mechanisms that control HSC fate choices. Using single-cell multigene expression analysis and time-lapse microscopy, here we define gene expression signatures and cell cycle hallmarks of murine HSCs and the earliest multipotent progenitors (MPPs), and analyze systematically single HSC fate choices in culture. Our analysis revealed twelve differentially expressed genes marking the quiescent HSC state, including four genes encoding cell-cell interaction signals in the niche. Under basal culture conditions, most HSCs rapidly commit to become early MPPs. In contrast, when we present ligands of the identified niche components such as JamC or Esam within artificial niches, HSC cycling is reduced and long-term multipotency in vivo is maintained. Our approach to bioengineer artificial niches should be useful in other stem cell systems.Haematopoietic stem cell (HSC) self-renewal is not sufficiently understood to recapitulate in vitro. Here, the authors generate gene signature and cell cycle hallmarks of single murine HSCs, and use identified endothelial receptors Esam and JamC as substrates to enhance HSC growth in engineered niches.


Assuntos
Células-Tronco Hematopoéticas/metabolismo , Nicho de Células-Tronco , Animais , Bioengenharia , Moléculas de Adesão Celular/metabolismo , Ciclo Celular , Feminino , Perfilação da Expressão Gênica , Masculino , Camundongos , Receptores de Superfície Celular/metabolismo , Análise de Célula Única
12.
Traffic ; 18(2): 123-133, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27976831

RESUMO

The assembly of microtubule-based cytoskeleton propels the cilia and flagella growth. Previous studies have indicated that the kinesin-2 family motors transport tubulin into the cilia through intraflagellar transport. Here, we report a direct interaction between the C-terminal tail fragments of heterotrimeric kinesin-2 and α-tubulin1 isoforms in vitro. Blot overlay screen, affinity purification from tissue extracts, cosedimentation with subtilisin-treated microtubule and LC-ESI-MS/MS characterization of the tail-fragment-associated tubulin identified an association between the tail domains and α-tubulin1A/D isotype. The interaction was confirmed by Forster's resonance energy transfer assay in tissue-cultured cells. The overexpression of the recombinant tails in NIH3T3 cells affected the primary cilia growth, which was rescued by coexpression of a α-tubulin1 transgene. Furthermore, fluorescent recovery after photobleach analysis in the olfactory cilia of Drosophila indicated that tubulin is transported in a non-particulate form requiring kinesin-2. These results provide additional new insight into the mechanisms underlying selective tubulin isoform enrichment in the cilia.


Assuntos
Cílios/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Subunidades Proteicas/metabolismo , Tubulina (Proteína)/metabolismo , Sequência de Aminoácidos , Animais , Transporte Biológico/fisiologia , Drosophila , Flagelos/metabolismo , Cinesinas , Camundongos , Microtúbulos/metabolismo , Células NIH 3T3 , Ligação Proteica/fisiologia , Domínios Proteicos/fisiologia
13.
Nat Commun ; 7: 13125, 2016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27731316

RESUMO

Haematopoietic stem cells (HSCs) differ from their committed progeny by relying primarily on anaerobic glycolysis rather than mitochondrial oxidative phosphorylation for energy production. However, whether this change in the metabolic program is the cause or the consequence of the unique function of HSCs remains unknown. Here we show that enforced modulation of energy metabolism impacts HSC self-renewal. Lowering the mitochondrial activity of HSCs by chemically uncoupling the electron transport chain drives self-renewal under culture conditions that normally induce rapid differentiation. We demonstrate that this metabolic specification of HSC fate occurs through the reversible decrease of mitochondrial mass by autophagy. Our data thus reveal a causal relationship between mitochondrial metabolism and fate choice of HSCs and also provide a valuable tool to expand HSCs outside of their native bone marrow niches.


Assuntos
Transporte de Elétrons/efeitos dos fármacos , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/classificação , Mitocôndrias/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Desacopladores/farmacologia , Animais , Autofagia/efeitos dos fármacos , Autofagia/genética , Biomarcadores/metabolismo , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/genética , Proliferação de Células/efeitos dos fármacos , Feminino , Citometria de Fluxo , Glicólise/efeitos dos fármacos , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Ionóforos de Próton/farmacologia , Receptores de Superfície Celular/metabolismo , Nicho de Células-Tronco/genética , Irradiação Corporal Total
14.
Lab Chip ; 12(16): 2843-9, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22647973

RESUMO

We report a reliable strategy to perform automated image cytometry of single (non-adherent) stem cells captured in microfluidic traps. The method rapidly segments images of an entire microfluidic chip based on the detection of horizontal edges of microfluidic channels, from where the position of the trapped cells can be derived and the trapped cells identified with very high precision (>97%). We used this method to successfully quantify the efficiency and spatial distribution of single-cell loading of a microfluidic chip comprised of 2048 single-cell traps. Furthermore, cytometric analysis of trapped primary hematopoietic stem cells (HSC) faithfully recapitulated the distribution of cells in the G1 and S/G2-M phase of the cell cycle that was measured by flow cytometry. This approach should be applicable to automatically track single live cells in a wealth of microfluidic systems.


Assuntos
Células-Tronco Hematopoéticas/citologia , Técnicas Analíticas Microfluídicas/métodos , Animais , Automação , Células da Medula Óssea/citologia , Divisão Celular , Dimetilpolisiloxanos/química , Citometria de Fluxo , Fase G1 , Fase G2 , Camundongos , Camundongos Endogâmicos C57BL , Técnicas Analíticas Microfluídicas/instrumentação , Fase S
15.
Traffic ; 13(7): 979-91, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22486887

RESUMO

Bulk flow constitutes a substantial part of the slow transport of soluble proteins in axons. Though the underlying mechanism is unclear, evidences indicate that intermittent, kinesin-based movement of large protein-aggregates aids this process. Choline acetyltransferase (ChAT), a soluble enzyme catalyzing acetylcholine synthesis, propagates toward the synapse at an intermediate, slow rate. The presynaptic enrichment of ChAT requires heterotrimeric kinesin-2, comprising KLP64D, KLP68D and DmKAP, in Drosophila. Here, we show that the bulk flow of a recombinant Green Fluorescent Protein-tagged ChAT (GFP::ChAT), in Drosophila axons, lacks particulate features. It occurs for a brief period during the larval stages. In addition, both the endogenous ChAT and GFP::ChAT directly bind to the KLP64D tail, which is essential for the GFP::ChAT entry and anterograde flow in axon. These evidences suggest that a direct interaction with motor proteins could regulate the bulk flow of soluble proteins, and thus establish their asymmetric distribution.


Assuntos
Transporte Axonal/fisiologia , Colina O-Acetiltransferase/metabolismo , Proteínas de Drosophila/metabolismo , Cinesinas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Animais , Animais Geneticamente Modificados , Transporte Axonal/genética , Proteínas de Transporte/metabolismo , Neurônios Colinérgicos/enzimologia , Neurônios Colinérgicos/metabolismo , Drosophila/enzimologia , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/química , Recuperação de Fluorescência Após Fotodegradação , Cinesinas/química , Larva/enzimologia , Larva/metabolismo , Proteínas Associadas aos Microtúbulos/química , Domínios e Motivos de Interação entre Proteínas , Sinapses/enzimologia , Sinapses/metabolismo
16.
Mol Biol Cell ; 22(6): 769-81, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21233284

RESUMO

Structurally diverse sensory cilia have evolved from primary cilia, a microtubule-based cellular extension engaged in chemical and mechanical sensing and signal integration. The diversity is often associated with functional specialization. The olfactory receptor neurons in Drosophila, for example, express three distinct bipartite cilia displaying different sets of olfactory receptors on them. Molecular description underlying their assembly and diversification is still incomplete. Here, we show that the branched and the slender olfactory cilia develop in two distinct step-wise patterns through the pupal stages before the expression of olfactory receptor genes in olfactory neurons. The process initiates with a thin procilium growth from the dendrite apex, followed by volume increment in successive stages. Mutations in the kinesin-II subunit genes either eliminate or restrict the cilia growth as well as tubulin entry into the developing cilia. Together with previous results, our results here suggest that heterotrimeric kinesin-II is the primary motor engaged in all type-I sensory cilia assembly in Drosophila and that the cilia structure diversity is achieved through additional transports supported by the motor during development.


Assuntos
Drosophila melanogaster/anatomia & histologia , Cinesinas/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Neurônios Receptores Olfatórios/ultraestrutura , Animais , Antenas de Artrópodes/crescimento & desenvolvimento , Antenas de Artrópodes/metabolismo , Antenas de Artrópodes/ultraestrutura , Cílios/fisiologia , Cílios/ultraestrutura , Drosophila melanogaster/fisiologia , Cinesinas/química , Cinesinas/genética , Estrutura Quaternária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA