Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(21)2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34768811

RESUMO

CYP102A1 (BM3) is a catalytically self-sufficient flavocytochrome fusion protein isolated from Bacillus megaterium, which displays similar metabolic capabilities to many drug-metabolizing human P450 isoforms. BM3's high catalytic efficiency, ease of production and malleable active site makes the enzyme a desirable tool in the production of small molecule metabolites, especially for compounds that exhibit drug-like chemical properties. The engineering of select key residues within the BM3 active site vastly expands the catalytic repertoire, generating variants which can perform a range of modifications. This provides an attractive alternative route to the production of valuable compounds that are often laborious to synthesize via traditional organic means. Extensive studies have been conducted with the aim of engineering BM3 to expand metabolite production towards a comprehensive range of drug-like compounds, with many key examples found both in the literature and in the wider industrial bioproduction setting of desirable oxy-metabolite production by both wild-type BM3 and related variants. This review covers the past and current research on the engineering of BM3 to produce drug metabolites and highlights its crucial role in the future of biosynthetic pharmaceutical production.


Assuntos
Bacillus megaterium/enzimologia , Proteínas de Bactérias/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Inativação Metabólica
2.
J Biol Chem ; 295(22): 7595-7607, 2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32303637

RESUMO

The cytochrome P450 monooxygenase P450 BM3 (BM3) is a biotechnologically important and versatile enzyme capable of producing important compounds such as the medical drugs pravastatin and artemether, and the steroid hormone testosterone. BM3 is a natural fusion enzyme comprising two major domains: a cytochrome P450 (heme-binding) catalytic domain and a NADPH-cytochrome P450 reductase (CPR) domain containing FAD and FMN cofactors in distinct domains of the CPR. A crystal structure of full-length BM3 enzyme is not available in its monomeric or catalytically active dimeric state. In this study, we provide detailed insights into the protein-protein interactions that occur between domains in the BM3 enzyme and characterize molecular interactions within the BM3 dimer by using several hybrid mass spectrometry (MS) techniques, namely native ion mobility MS (IM-MS), collision-induced unfolding (CIU), and hydrogen-deuterium exchange MS (HDX-MS). These methods enable us to probe the structure, stoichiometry, and domain interactions in the ∼240 kDa BM3 dimeric complex. We obtained high-sequence coverage (88-99%) in the HDX-MS experiments for full-length BM3 and its component domains in both the ligand-free and ligand-bound states. We identified important protein interaction sites, in addition to sites corresponding to heme-CPR domain interactions at the dimeric interface. These findings bring us closer to understanding the structure and catalytic mechanism of P450 BM3.


Assuntos
Bacillus megaterium/enzimologia , Proteínas de Bactérias/química , Sistema Enzimático do Citocromo P-450/química , NADPH-Ferri-Hemoproteína Redutase/química , Multimerização Proteica , Cristalografia por Raios X , Medição da Troca de Deutério , Espectrometria de Massas , Domínios Proteicos , Estrutura Quaternária de Proteína
3.
J Med Chem ; 63(3): 1415-1433, 2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-31965799

RESUMO

The human cytochrome P450 (CYP) enzymes CYP3A4 and CYP3A5 metabolize most drugs and have high similarities in their structure and substrate preference. Whereas CYP3A4 is predominantly expressed in the liver, CYP3A5 is upregulated in cancer, contributing to drug resistance. Selective inhibitors of CYP3A5 are, therefore, critical to validating it as a therapeutic target. Here we report clobetasol propionate (clobetasol) as a potent and selective CYP3A5 inhibitor identified by high-throughput screening using enzymatic and cell-based assays. Molecular dynamics simulations suggest a close proximity of clobetasol to the heme in CYP3A5 but not in CYP3A4. UV-visible spectroscopy and electron paramagnetic resonance analyses confirmed the formation of an inhibitory type I heme-clobetasol complex in CYP3A5 but not in CYP3A4, thus explaining the CYP3A5 selectivity of clobetasol. Our results provide a structural basis for selective CYP3A5 inhibition, along with mechanistic insights, and highlight clobetasol as an important chemical tool for target validation.


Assuntos
Clobetasol/metabolismo , Clobetasol/farmacologia , Inibidores do Citocromo P-450 CYP3A/metabolismo , Inibidores do Citocromo P-450 CYP3A/farmacologia , Citocromo P-450 CYP3A/metabolismo , Heme/metabolismo , Linhagem Celular Tumoral , Clobetasol/química , Citocromo P-450 CYP3A/química , Inibidores do Citocromo P-450 CYP3A/química , Ensaios Enzimáticos , Heme/química , Ensaios de Triagem em Larga Escala , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica
4.
Sci Rep ; 9(1): 1577, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30733479

RESUMO

Flavocytochrome P450 BM3 is a natural fusion protein constructed of cytochrome P450 and NADPH-cytochrome P450 reductase domains. P450 BM3 binds and oxidizes several mid- to long-chain fatty acids, typically hydroxylating these lipids at the ω-1, ω-2 and ω-3 positions. However, protein engineering has led to variants of this enzyme that are able to bind and oxidize diverse compounds, including steroids, terpenes and various human drugs. The wild-type P450 BM3 enzyme binds inefficiently to many azole antifungal drugs. However, we show that the BM3 A82F/F87V double mutant (DM) variant binds substantially tighter to numerous azole drugs than does the wild-type BM3, and that their binding occurs with more extensive heme spectral shifts indicative of complete binding of several azoles to the BM3 DM heme iron. We report here the first crystal structures of P450 BM3 bound to azole antifungal drugs - with the BM3 DM heme domain bound to the imidazole drugs clotrimazole and tioconazole, and to the triazole drugs fluconazole and voriconazole. This is the first report of any protein structure bound to the azole drug tioconazole, as well as the first example of voriconazole heme iron ligation through a pyrimidine nitrogen from its 5-fluoropyrimidine ring.


Assuntos
Antifúngicos/química , Azóis/química , NADPH-Ferri-Hemoproteína Redutase/química , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Antifúngicos/farmacologia , Azóis/farmacologia , Humanos , Ligantes , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Análise Espectral , Relação Estrutura-Atividade
5.
Methods Enzymol ; 608: 189-261, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30173763

RESUMO

The cytochrome P450 monooxygenase enzymes (P450s) catalyze a diverse array of chemical transformations, most originating from the insertion of an oxygen atom into a substrate that binds close to the P450 heme. The oxygen is delivered by a highly reactive heme iron-oxo species (compound I) and, according to the chemical nature of the substrate and its position in the active site, the P450 can catalyze a wide range of reactions including, e.g., hydroxylation, reduction, decarboxylation, sulfoxidation, N- and O-demethylation, epoxidation, deamination, CC bond formation and breakage, nitration, and dehalogenation. In this chapter, we describe the structural, biochemical, and catalytic properties of the P450s, along with spectroscopic and analytical methods used to characterize P450 enzymes and their redox partners. Important uses of P450 enzymes are highlighted, including how various P450s have been exploited for applications in synthetic biology.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Engenharia de Proteínas/métodos , Animais , Bactérias/química , Bactérias/enzimologia , Bactérias/genética , Bactérias/metabolismo , Cristalografia por Raios X/métodos , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/isolamento & purificação , Escherichia coli/química , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo , Fungos/química , Fungos/enzimologia , Fungos/genética , Fungos/metabolismo , Expressão Gênica , Humanos , Modelos Moleculares , Oxirredução , Conformação Proteica , Biologia Sintética/métodos
6.
J Inorg Biochem ; 188: 18-28, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30119014

RESUMO

The CYP152 family of cytochrome P450 enzymes (P450s or CYPs) are bacterial peroxygenases that use hydrogen peroxide to drive hydroxylation and decarboxylation of fatty acid substrates. We have expressed and purified a novel CYP152 family member - CYP152K6 from the methylotroph Bacillus methanolicus MGA3. CYP152K6 was characterized using spectroscopic, analytical and structural methods. CYP152K6, like its peroxygenase counterpart P450SPα (CYP152B1) from Sphingomonas paucimobilis, does not undergo significant fatty acid-induced perturbation to the heme spectrum, with the exception of a minor Soret shift observed on binding dodecanoic acid. However, CYP152K6 purified from an E. coli expression system was crystallized and its structure was determined to 1.3 Šwith tetradecanoic acid bound. No lipids were present in conditions used for crystallogenesis, and thus CYP152K6 must form a complex by incorporating the fatty acid from E. coli cells. Turnover studies with dodecanoic acid revealed several products, with 2-hydroxydodecanoic acid as the major product and much smaller quantities of 3-hydroxydodecanoic acid. Secondary turnover products were undec-1-en-1-ol, 2-hydroxydodec-2-enoic acid and 2,3-dihydroxydodecanoic acid. This is the first report of a 2,3-hydroxylated fatty acid product made by a peroxygenase P450, with the dihydroxylated product formed by CYP152K6-catalyzed 3-hydroxylation of 2-hydroxydodecanoic acid, but not by 2-hydroxylation of 3-hydroxydodecanoic acid.


Assuntos
Bacillus/enzimologia , Proteínas de Bactérias/química , Sistema Enzimático do Citocromo P-450/química , Ácidos Graxos/química , Catálise , Domínio Catalítico , Cristalografia por Raios X , Hidroxilação , Especificidade por Substrato
7.
J Biol Chem ; 292(12): 5128-5143, 2017 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-28053093

RESUMO

The Jeotgalicoccus sp. peroxygenase cytochrome P450 OleTJE (CYP152L1) is a hydrogen peroxide-driven oxidase that catalyzes oxidative decarboxylation of fatty acids, producing terminal alkenes with applications as fine chemicals and biofuels. Understanding mechanisms that favor decarboxylation over fatty acid hydroxylation in OleTJE could enable protein engineering to improve catalysis or to introduce decarboxylation activity into P450s with different substrate preferences. In this manuscript, we have focused on OleTJE active site residues Phe79, His85, and Arg245 to interrogate their roles in substrate binding and catalytic activity. His85 is a potential proton donor to reactive iron-oxo species during substrate decarboxylation. The H85Q mutant substitutes a glutamine found in several peroxygenases that favor fatty acid hydroxylation. H85Q OleTJE still favors alkene production, suggesting alternative protonation mechanisms. However, the mutant undergoes only minor substrate binding-induced heme iron spin state shift toward high spin by comparison with WT OleTJE, indicating the key role of His85 in this process. Phe79 interacts with His85, and Phe79 mutants showed diminished affinity for shorter chain (C10-C16) fatty acids and weak substrate-induced high spin conversion. F79A OleTJE is least affected in substrate oxidation, whereas the F79W/Y mutants exhibit lower stability and cysteine thiolate protonation on reduction. Finally, Arg245 is crucial for binding the substrate carboxylate, and R245E/L mutations severely compromise activity and heme content, although alkene products are formed from some substrates, including stearic acid (C18:0). The results identify crucial roles for the active site amino acid trio in determining OleTJE catalytic efficiency in alkene production and in regulating protein stability, heme iron coordination, and spin state.


Assuntos
Alcenos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Peroxidases/metabolismo , Staphylococcaceae/enzimologia , Sequência de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/genética , Ácidos Graxos/metabolismo , Hidroxilação , Modelos Moleculares , Mutação , Peroxidases/química , Peroxidases/genética , Alinhamento de Sequência , Staphylococcaceae/química , Staphylococcaceae/genética , Staphylococcaceae/metabolismo , Especificidade por Substrato
8.
ACS Omega ; 2(8): 4705-4724, 2017 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-30023729

RESUMO

The cytochrome P450/P450 reductase fusion enzyme CYP505A30 from the thermophilic fungus Myceliophthora thermophila and its heme (P450) domain were expressed in Escherichia coli and purified using affinity, ion exchange, and size exclusion chromatography. CYP505A30 binds straight chain fatty acids (from ∼C10 to C20), with highest affinity for tridecanoic acid (KD = 2.7 µM). Reduced nicotinamide adenine dinucleotide phosphate is the preferred reductant for CYP505A30 (KM = 3.1 µM compared to 330 µM for reduced nicotinamide adenine dinucleotide in cytochrome c reduction). Electron paramagnetic resonance confirmed cysteine thiolate coordination of heme iron in CYP505A30 and its heme domain. Redox potentiometry revealed an unusually positive midpoint potential for reduction of the flavin adenine dinucleotide and flavin mononucleotide cofactors (E0' ∼ -118 mV), and a large increase in the CYP505A30 heme domain FeIII/FeII redox couple (ca. 230 mV) on binding arachidonic acid substrate. This switch brings the ferric heme iron potential into the same range as that of the reductase flavins. Multiangle laser light scattering analysis revealed CYP505A30's ability to dimerize, whereas the heme domain is monomeric. These data suggest CYP505A30 may function catalytically as a dimer (as described for Bacillus megaterium P450 BM3), and that binding interactions between CYP505A30 heme domains are not required for dimer formation. CYP505A30 catalyzed hydroxylation of straight chain fatty acids at the ω-1 to ω-3 positions, with a strong preference for ω-1 over ω-3 hydroxylation in the oxidation of dodecanoic and tetradecanoic acids (88 vs 2% products and 63 vs 9% products, respectively). CYP505A30 has important structural and catalytic similarities to P450 BM3 but distinct regioselectivity of lipid substrate oxidation with potential biotechnological applications.

9.
J Biol Chem ; 292(4): 1310-1329, 2017 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-27932461

RESUMO

The Mycobacterium tuberculosis H37Rv genome encodes 20 cytochromes P450, including P450s crucial to infection and bacterial viability. Many M. tuberculosis P450s remain uncharacterized, suggesting that their further analysis may provide new insights into M. tuberculosis metabolic processes and new targets for drug discovery. CYP126A1 is representative of a P450 family widely distributed in mycobacteria and other bacteria. Here we explore the biochemical and structural properties of CYP126A1, including its interactions with new chemical ligands. A survey of azole antifungal drugs showed that CYP126A1 is inhibited strongly by azoles containing an imidazole ring but not by those tested containing a triazole ring. To further explore the molecular preferences of CYP126A1 and search for probes of enzyme function, we conducted a high throughput screen. Compounds containing three or more ring structures dominated the screening hits, including nitroaromatic compounds that induce substrate-like shifts in the heme spectrum of CYP126A1. Spectroelectrochemical measurements revealed a 155-mV increase in heme iron potential when bound to one of the newly identified nitroaromatic drugs. CYP126A1 dimers were observed in crystal structures of ligand-free CYP126A1 and for CYP126A1 bound to compounds discovered in the screen. However, ketoconazole binds in an orientation that disrupts the BC-loop regions at the P450 dimer interface and results in a CYP126A1 monomeric crystal form. Structural data also reveal that nitroaromatic ligands "moonlight" as substrates by displacing the CYP126A1 distal water but inhibit enzyme activity. The relatively polar active site of CYP126A1 distinguishes it from its most closely related sterol-binding P450s in M. tuberculosis, suggesting that further investigations will reveal its diverse substrate selectivity.


Assuntos
Antifúngicos/química , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Inibidores das Enzimas do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/química , Cetoconazol/química , Mycobacterium tuberculosis/enzimologia , Domínio Catalítico , Sistema Enzimático do Citocromo P-450/genética , Mycobacterium tuberculosis/genética , Estrutura Secundária de Proteína
10.
Biochemistry ; 55(36): 5073-83, 2016 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-27546061

RESUMO

DGCR8 is the RNA-binding partner of the nuclease Drosha. Their complex (the "Microprocessor") is essential for processing of long, primary microRNAs (pri-miRNAs) in the nucleus. Binding of heme to DGCR8 is essential for pri-miRNA processing. On the basis of the split Soret ultraviolet-visible (UV-vis) spectrum of ferric DGCR8, bis-thiolate sulfur (cysteinate, Cys(-)) heme iron coordination of DGCR8 heme iron was proposed. We have characterized DGCR8 heme ligation using the Δ276 DGCR8 variant and combined electron paramagnetic resonance (EPR), magnetic circular dichroism (MCD), electron nuclear double resonance, resonance Raman, and electronic absorption spectroscopy. These studies indicate DGCR8 bis-Cys heme iron ligation, with conversion from bis-thiolate (Cys(-)/Cys(-)) axial coordination in ferric DGCR8 to bis-thiol (CysH/CysH) coordination in ferrous DGCR8. Pri-miRNA binding does not perturb ferric DGCR8's optical spectrum, consistent with the axial ligand environment being separated from the substrate-binding site. UV-vis absorption spectra of the Fe(II) and Fe(II)-CO forms indicate discrete species exhibiting peaks with absorption coefficients substantially larger than those for ferric DGCR8 and that previously reported for a ferrous form of DGCR8. Electron-nuclear double resonance spectroscopy data exclude histidine or water as axial ligands for ferric DGCR8 and favor bis-thiolate coordination in this form. UV-vis MCD and near-infrared MCD provide data consistent with this conclusion. UV-vis MCD data for ferrous DGCR8 reveal features consistent with bis-thiol heme iron coordination, and resonance Raman data for the ferrous-CO form are consistent with a thiol ligand trans to the CO. These studies support retention of DGCR8 cysteine coordination upon reduction, a conclusion distinct from those of previous studies of a different ferrous DGCR8 isoform.


Assuntos
Heme/química , Ferro/química , Proteínas de Ligação a RNA/química , Clonagem Molecular , Humanos , Proteínas de Ligação a RNA/genética , Análise Espectral/métodos
11.
Curr Opin Chem Biol ; 31: 136-45, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-27015292

RESUMO

Cytochrome P450 enzymes (P450s) are a superfamily of monooxygenase enzymes with enormous potential for synthetic biology applications. Across Nature, their substrate range is vast and exceeds that of other enzymes. The range of different chemical transformations performed by P450s is also substantial, and continues to expand through interrogation of the properties of novel P450s and by protein engineering studies. The ability of P450s to introduce oxygen atoms at specific positions on complex molecules makes these enzymes particularly valuable for applications in synthetic biology. This review focuses on the enzymatic properties and reaction mechanisms of P450 enzymes, and on recent studies that highlight their broad applications in the production of oxychemicals. For selected soluble bacterial P450s (notably the high-activity P450-cytochrome P450 reductase enzyme P450 BM3), variants with a multitude of diverse substrate selectivities have been generated both rationally and by random mutagenesis/directed evolution approaches. This highlights the robustness and malleability of the P450 fold, and the capacity of these biocatalysts to oxidise a wide range of chemical scaffolds. This article reviews recent research on the application of wild-type and engineered P450s in the production of important chemicals, including pharmaceuticals and drug metabolites, steroids and antibiotics. In addition, the properties of unusual members of the P450 superfamily that do not follow the canonical P450 catalytic pathway are described.


Assuntos
Bactérias/enzimologia , Biotecnologia , Sistema Enzimático do Citocromo P-450/metabolismo , Catálise , Cristalografia por Raios X , Sistema Enzimático do Citocromo P-450/química , Especificidade por Substrato
12.
J Biol Chem ; 288(19): 13194-203, 2013 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-23539616

RESUMO

Heme is a prosthetic group best known for roles in oxygen transport, oxidative catalysis, and respiratory electron transport. Recent years have seen the roles of heme extended to sensors of gases such as O2 and NO and cell redox state, and as mediators of cellular responses to changes in intracellular levels of these gases. The importance of heme is further evident from identification of proteins that bind heme reversibly, using it as a signal, e.g. to regulate gene expression in circadian rhythm pathways and control heme synthesis itself. In this minireview, we explore the current knowledge of the diverse roles of heme sensor proteins.


Assuntos
Heme/metabolismo , Hemeproteínas/genética , Animais , Monóxido de Carbono/metabolismo , Ritmo Circadiano , Regulação da Expressão Gênica , Guanilato Ciclase/metabolismo , Hemeproteínas/metabolismo , Homeostase , Humanos , Oxirredução , Estresse Oxidativo , Oxigênio/metabolismo
13.
Trends Biochem Sci ; 38(3): 140-50, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23356956

RESUMO

The cytochromes P450 (P450s) are probably nature's most versatile enzymes in terms of both their vast substrate range and the diverse types of molecular transformations performed across the P450 enzyme superfamily. The P450s exquisitely perform highly specific oxidative chemistry, utilizing a sophisticated catalytic reaction mechanism. Recent studies have provided the first definitive characterization of the transient reaction cycle intermediate (compound I) responsible for the majority of P450 oxidative reactions. This major advance comes at a time when P450 engineering has facilitated the elucidation of several mammalian P450 structures and generated P450 variants with novel substrate specificity and reactivity. This review describes recent advances in P450 research and the ramifications for biotechnological and biomedical exploitation of these enzymes.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Animais , Biocatálise , Tecnologia Biomédica , Biotecnologia , Sistema Enzimático do Citocromo P-450/genética , Humanos
14.
FEBS J ; 279(9): 1694-706, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22356131

RESUMO

We report the crystal structure of the FAD/NADPH-binding domain (FAD domain) of the biotechnologically important Bacillus megaterium flavocytochrome P450 BM3, the last domain of the enzyme to be structurally resolved. The structure was solved in both the absence and presence of the ligand NADP(+), identifying important protein interactions with the NADPH 2'-phosphate that helps to dictate specificity for NADPH over NADH, and involving residues Tyr974, Arg966, Lys972 and Ser965. The Trp1046 side chain shields the FAD isoalloxazine ring from NADPH, and motion of this residue is required to enable NADPH-dependent FAD reduction. Multiple binding interactions stabilize the FAD cofactor, including aromatic stacking with the adenine group from the side chains of Tyr860 and Trp854, and several interactions with FAD pyrophosphate oxygens, including bonding to tyrosines 828, 829 and 860. Mutagenesis of C773 and C999 to alanine was required for successful crystallization, with C773A predicted to disfavour intramolecular and intermolecular disulfide bonding. Multiangle laser light scattering analysis showed wild-type FAD domain to be near-exclusively dimeric, with dimer disruption achieved on treatment with the reducing agent dithiothreitol. By contrast, light scattering showed that the C773A/C999A FAD domain was monomeric. The C773A/C999A FAD domain structure confirms that Ala773 is surface exposed and in close proximity to Cys810, with this region of the enzyme's connecting domain (that links the FAD domain to the FMN-binding domain in P450 BM3) located at a crystal contact interface between FAD domains. The FAD domain crystal structure enables molecular modelling of its interactions with its cognate FMN (flavodoxin-like) domain within the BM3 reductase module.


Assuntos
Proteínas de Bactérias/química , Sistema Enzimático do Citocromo P-450/química , Flavina-Adenina Dinucleotídeo/metabolismo , NADPH-Ferri-Hemoproteína Redutase/química , NADP/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Sítios de Ligação , Cristalografia por Raios X , Sistema Enzimático do Citocromo P-450/genética , Lasers , Modelos Moleculares , Mutação , NADPH-Ferri-Hemoproteína Redutase/genética , Espalhamento de Radiação
15.
Metallomics ; 3(4): 369-78, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21431175

RESUMO

Bacillus megaterium flavocytochrome P450 BM3 (BM3) is a high activity fatty acid hydroxylase, formed by the fusion of soluble cytochrome P450 and cytochrome P450 reductase modules. Short chain (C6, C8) alkynes were shown to be substrates for BM3, with productive outcomes (i.e. alkyne hydroxylation) dependent on position of the carbon-carbon triple bond in the molecule. Wild-type P450 BM3 catalyses ω-3 hydroxylation of both 1-hexyne and 1-octyne, but is suicidally inactivated in NADPH-dependent turnover with non-terminal alkynes. A F87G mutant of P450 BM3 also undergoes turnover-dependent heme destruction with the terminal alkynes, pointing to a key role for Phe87 in controlling regioselectivity of alkyne oxidation. The terminal alkynes access the BM3 heme active site led by the acetylene functional group, since hydroxylated products are not observed near the opposite end of the molecules. For both 1-hexyne and 1-octyne, the predominant enantiomeric product formed (up to ∼90%) is the (S)-(-)-1-alkyn-3-ol form. Wild-type P450 BM3 is shown to be an effective oxidase catalyst of terminal alkynes, with strict regioselectivity of oxidation and potential biotechnological applications. The absence of measurable octanoic or hexanoic acid products from oxidation of the relevant 1-alkynes is also consistent with previous studies suggesting that removal of the phenyl group in the F87G mutant does not lead to significant levels of ω-oxidation of alkyl chain substrates.


Assuntos
Alcinos/metabolismo , Bacillus megaterium/enzimologia , Proteínas de Bactérias/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Bacillus megaterium/genética , Proteínas de Bactérias/genética , Sistema Enzimático do Citocromo P-450/genética , Modelos Moleculares , Mutação , NADP/metabolismo , NADPH-Ferri-Hemoproteína Redutase/genética , Oxirredução
16.
Arch Biochem Biophys ; 507(1): 75-85, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-20868649

RESUMO

Bacillus megaterium P450 BM3 (BM3) is a P450/P450 reductase fusion enzyme, where the dimer is considered the active form in NADPH-dependent fatty acid hydroxylation. The BM3 W1046A mutant was generated, removing an aromatic "shield" from its FAD isoalloxazine ring. W1046A BM3 is a catalytically active NADH-dependent lauric acid hydroxylase, with product formation slightly superior to the NADPH-driven enzyme. The W1046A BM3 K(m) for NADH is 20-fold lower than wild-type BM3, and catalytic efficiency of W1046A BM3 with NADH and NADPH are similar in lauric acid oxidation. Wild-type BM3 also catalyzes NADH-dependent lauric acid hydroxylation, but less efficiently than W1046A BM3. A hypothesis that W1046A BM3 is inactive [15] helped underpin a model of electron transfer from FAD in one BM3 monomer to FMN in the other in order to drive fatty acid hydroxylation in native BM3. Our data showing W1046A BM3 is a functional fatty acid hydroxylase are consistent instead with a BM3 catalytic model involving electron transfer within a reductase monomer, and from FMN of one monomer to heme of the other [12]. W1046A BM3 is an efficient NADH-utilizing fatty acid hydroxylase with potential biotechnological applications.


Assuntos
Bacillus megaterium/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Ácidos Graxos/metabolismo , NADPH-Ferri-Hemoproteína Redutase/genética , NADPH-Ferri-Hemoproteína Redutase/metabolismo , NAD/metabolismo , Bacillus megaterium/genética , Transporte de Elétrons , Mononucleotídeo de Flavina/metabolismo , Heme/metabolismo , Hidroxilação , Mutação , Oxirredução , Multimerização Proteica
17.
Biochem J ; 427(3): 455-66, 2010 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-20180779

RESUMO

Bacillus megaterium flavocytochrome P450 BM3 (CYP102A1) is a biotechnologically important cytochrome P450/P450 reductase fusion enzyme. Mutants I401E, F261E and L86E were engineered near the haem 5-methyl group, to explore the ability of the glutamate carboxylates to form ester linkages with the methyl group, as observed for eukaryotic CYP4 relatives. Although no covalent linkage was detected, mutants displayed marked alterations in substrate/inhibitor affinity, with L86E and I401E mutants having lower Kd values for arachidonic acid and dodecanoic (lauric) acid than WT (wild-type) BM3. All mutations induced positive shifts in haem Fe(III)/Fe(II) potential, with substrate-free I401E (-219 mV) being >170 mV more positive than WT BM3. The elevated potential stimulated FMN-to-haem electron transfer ~2-fold (to 473 s-1) in I401E, and resulted in stabilization of Fe(II)O2 complexes in the I401E and L86E P450s. EPR demonstrated some iron co-ordination by glutamate carboxylate in L86E and F261E mutants, indicating structural plasticity in the haem domains. The Fe(II)O2 complex is EPR-silent, probably resulting from antiferromagnetic coupling between Fe(III) and bound superoxide in a ferric superoxo species. Structural analysis of mutant haem domains revealed modest rearrangements, including altered haem propionate interactions that may underlie the thermodynamic perturbations observed. The mutant flavocytochromes demonstrated WT-like hydroxylation of dodecanoic acid, but regioselectivity was skewed towards omega-3 hydroxydodecanoate formation in F261E and towards omega-1 hydroxydodecanoate production in I401E. Our data point strongly to a likelihood that glutamate-haem linkages are disfavoured in this most catalytically efficient P450, possibly due to the absence of a methylene radical species during catalysis.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/metabolismo , Ésteres/química , Ácido Glutâmico/química , Heme/química , NADPH-Ferri-Hemoproteína Redutase/química , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Ácido Araquidônico/metabolismo , Proteínas de Bactérias/genética , Cristalografia , Sistema Enzimático do Citocromo P-450/genética , Espectroscopia de Ressonância de Spin Eletrônica , Cinética , Ácidos Láuricos/metabolismo , Mutagênese Sítio-Dirigida , Mutação , NADPH-Ferri-Hemoproteína Redutase/genética , Potenciometria , Estrutura Terciária de Proteína/genética , Estrutura Terciária de Proteína/fisiologia , Espectrofotometria Ultravioleta , Análise Espectral Raman , Especificidade por Substrato
18.
Biochim Biophys Acta ; 1794(8): 1181-9, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19344791

RESUMO

Bacillus megaterium P450 BM3 (BM3) is an NAD(P)H-binding diflavin reductase exhibiting substantial coenzyme specificity for NADPH over NADH. The side chains of serine 965, arginine 966 and lysine 972 in its FAD-binding domain bind the NADPH 2'-phosphate. Optical, kinetic and thermodynamic properties of S965A, R966A and K972A FAD domains were analyzed singly and combined with the FAD-shielding W1046A mutation. Steady-state and stopped-flow kinetic studies demonstrated substantially decreased NADPH affinity versus wild-type (WT) FAD domain (146-fold for the S965A K(d)). Considerable catalytic efficiency increases (the ratio of specificity constants, k(cat)/K(m), for the coenzymes) with NADH were observed for each point mutant over WT (570-fold in K972A), along with increased rates of NADH-dependent FAD reduction (k(lim) elevated 5.2-fold in R966A). In combination with W1046A, considerable (37 to 56-fold) improvements over WT were seen in the k(lim) parameters with NADH for all double mutants. Each 2'-phosphate binding point mutant produced large increases in FAD potential (111 mV in R966A), despite large distances between these residues and the FAD isoalloxazine ring (18-21 A), suggesting long range conformational influences on FAD environment. The W1046A/K972A mutant abolished NADPH selectivity (8340-fold coenzyme selectivity switch towards NADH), with ramifications for BM3's biotechnological exploitation using the cheaper NADH coenzyme.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , NADPH-Ferri-Hemoproteína Redutase/química , NADPH-Ferri-Hemoproteína Redutase/metabolismo , NADP/metabolismo , Sequência de Aminoácidos , Arginina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/isolamento & purificação , Cinética , Lisina/metabolismo , Dados de Sequência Molecular , NADPH-Ferri-Hemoproteína Redutase/genética , NADPH-Ferri-Hemoproteína Redutase/isolamento & purificação , Estrutura Terciária de Proteína/genética , Alinhamento de Sequência , Serina/metabolismo
19.
Biochem J ; 417(1): 65-76, 2009 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-18721129

RESUMO

Bacillus megaterium flavocytochrome P450 BM3 is a catalytically self-sufficient fatty acid hydroxylase formed by fusion of soluble NADPH-cytochrome P450 reductase and P450 domains. Selected mutations at residue 264 in the haem (P450) domain of the enzyme lead to novel amino acid sixth (distal) co-ordination ligands to the haem iron. The catalytic, spectroscopic and thermodynamic properties of the A264M, A264Q and A264C variants were determined in both the intact flavocytochromes and haem domains of P450 BM3. Crystal structures of the mutant haem domains demonstrate axial ligation of P450 haem iron by methionine and glutamine ligands trans to the cysteine thiolate, creating novel haem iron ligand sets in the A264M/Q variants. In contrast, the crystal structure of the A264C variant reveals no direct interaction between the introduced cysteine side chain and the haem, although EPR data indicate Cys(264) interactions with haem iron in solution. The A264M haem potential is elevated by comparison with wild-type haem domain, and substrate binding to the A264Q haem domain results in a approximately 360 mV increase in potential. All mutant haem domains occupy the conformation adopted by the substrate-bound form of wild-type BM3, despite the absence of added substrate. The A264M mutant (which has higher dodecanoate affinity than wild-type BM3) co-purifies with a structurally resolved lipid. These data demonstrate that a single mutation at Ala(264) is enough to perturb the conformational equilibrium between substrate-free and substrate-bound P450 BM3, and provide firm structural and spectroscopic data for novel haem iron ligand sets unprecedented in nature.


Assuntos
Proteínas de Bactérias/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Heme/metabolismo , Mutação , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Dicroísmo Circular , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/genética , Espectroscopia de Ressonância de Spin Eletrônica , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Glutamina/química , Glutamina/genética , Glutamina/metabolismo , Heme/química , Cinética , Metionina/química , Metionina/genética , Metionina/metabolismo , Mutagênese Sítio-Dirigida , NADPH-Ferri-Hemoproteína Redutase/química , NADPH-Ferri-Hemoproteína Redutase/genética , Ligação Proteica , Termodinâmica
20.
Expert Opin Drug Metab Toxicol ; 3(6): 847-63, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18028029

RESUMO

Cytochromes P450 (CYPs) are versatile oxidase catalysts that play pivotal roles in drug metabolism. They are highly regarded as biotechnological tools for their capacity to perform regio- and stereo-selective oxidations. Human CYPs source electrons for oxygen activation from one or more separate redox partner enzymes. However, several CYP enzymes are now known in which the CYP is covalently linked to a reductase system. Some of these systems offer distinct advantages over typical CYPs as efficient, self-contained units capable of important biotransformations, including synthesis of high value chemicals and pharmaceuticals. Protein engineering has been widely applied to produce variant CYP fusions with desirable activities. The review focuses on the nature and diversity of CYP/redox partner fusion enzymes and their biocatalytic potential.


Assuntos
Biotecnologia/métodos , Sistema Enzimático do Citocromo P-450/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Toxicologia/métodos , Animais , Sistema Enzimático do Citocromo P-450/classificação , Sistema Enzimático do Citocromo P-450/genética , Humanos , Modelos Biológicos , Estrutura Molecular , Oxirredução , Preparações Farmacêuticas/química , Preparações Farmacêuticas/metabolismo , Proteínas Recombinantes de Fusão/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...