Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 10(1): 887, 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38071206

RESUMO

Cassava (Manihot esculenta Crantz) is a vital tropical root crop providing essential dietary energy to over 800 million people in tropical and subtropical regions. As a climate-resilient crop, its significance grows as the human population expands. However, yield improvement faces challenges from biotic and abiotic stress and limited breeding. Advanced sequencing and assembly techniques enabled the generation of a highly accurate, nearly complete, haplotype-resolved genome of the African cassava cultivar TMEB117. It is the most accurate cassava genome sequence to date with a base-level accuracy of QV > 64, N50 > 35 Mbp, and 98.9% BUSCO completeness. Over 60% of the genome comprises repetitive elements. We predicted over 45,000 gene models for both haplotypes. This achievement offers valuable insights into the heterozygosity genome organization of the cassava genome, with improved accuracy, completeness, and phased genomes. Due to its high susceptibility to African Cassava Mosaic Virus (ACMV) infections compared to other cassava varieties, TMEB117 provides an ideal reference for studying virus resistance mechanisms, including epigenetic variations and smallRNA expressions.


Assuntos
Genoma de Planta , Manihot , Haplótipos , Manihot/genética , Melhoramento Vegetal
2.
Plant Physiol Biochem ; 204: 108134, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37883916

RESUMO

Striga hermonthica is the most widespread and destructive plant parasite infesting maize and other major crops in sub-Saharan Africa where it causes severe yield losses and threatens food security. Several tolerant maize lines supporting reduced S. hermonthica emergence have been deployed. However, the molecular bases of such resistance are yet poorly understood. Based on a time course comparative gene expression analysis between susceptible and resistant maize lines we have confirmed resistance mechanisms known to be activated upon plant parasite infestation and identified potential novel players worth further investigation e.g. iron homeostasis and mitochondrial respiration-related genes. Most intriguingly, we show a previously unknown strategy of maize post-attachment resistance based on DIMBOA accumulation in S. hermonthica-infested maize roots. S. hermonthica infestation triggers positive regulation of gene expression in the hydroxamic acid (HA) pathway culminating with an accumulation of benzoxazinoids (BX), known for their antifeedant, insecticidal, antimicrobial, and allelopathic activities. We demonstrate that HA root content is positively correlated with S. hermonthica resistance in the resistant parent and its progenies and in unrelated maize lines. Downregulation of HA genes causes increased susceptibility to S. hermonthica infestation in loss-of-function maize mutants. While the mechanism of BX action in parasitic plant resistance is yet to be uncovered, the potential of this discovery for developing effective control and breeding strategies is enormous.


Assuntos
Striga , Striga/genética , Zea mays/genética , Melhoramento Vegetal , Produtos Agrícolas , Regulação para Baixo
3.
Int J Mol Sci ; 24(12)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37373488

RESUMO

Non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), short interfering RNAs (siRNAs), and long non-coding RNAs (lncRNAs), have emerged as pivotal regulators within the plant kingdom [...].


Assuntos
MicroRNAs , RNA Longo não Codificante , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Interferente Pequeno/genética
4.
Nat Commun ; 14(1): 2591, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37147358

RESUMO

Earth's life may have originated as self-replicating RNA, and it has been argued that RNA viruses and viroid-like elements are remnants of such pre-cellular RNA world. RNA viruses are defined by linear RNA genomes encoding an RNA-dependent RNA polymerase (RdRp), whereas viroid-like elements consist of small, single-stranded, circular RNA genomes that, in some cases, encode paired self-cleaving ribozymes. Here we show that the number of candidate viroid-like elements occurring in geographically and ecologically diverse niches is much higher than previously thought. We report that, amongst these circular genomes, fungal ambiviruses are viroid-like elements that undergo rolling circle replication and encode their own viral RdRp. Thus, ambiviruses are distinct infectious RNAs showing hybrid features of viroid-like RNAs and viruses. We also detected similar circular RNAs, containing active ribozymes and encoding RdRps, related to mitochondrial-like fungal viruses, highlighting fungi as an evolutionary hub for RNA viruses and viroid-like elements. Our findings point to a deep co-evolutionary history between RNA viruses and subviral elements and offer new perspectives in the origin and evolution of primordial infectious agents, and RNA life.


Assuntos
Vírus de RNA , RNA Catalítico , Viroides , Viroides/genética , RNA Catalítico/genética , RNA Viral/genética , Replicação Viral/genética , RNA/genética , Vírus de RNA/genética , RNA Polimerase Dependente de RNA/genética , Fungos/genética
5.
New Phytol ; 239(1): 240-254, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37148189

RESUMO

Chlorosis is frequently incited by viroids, small nonprotein-coding, circular RNAs replicating in nuclei (family Pospiviroidae) or chloroplasts (family Avsunviroidae). Here, we investigated how chrysanthemum chlorotic mottle viroid (CChMVd, Avsunviroidae) colonizes, evolves and initiates disease. Progeny variants of natural and mutated CChMVd sequence variants inoculated in chrysanthemum plants were characterized, and plant responses were assessed by molecular assays. We showed that: chlorotic mottle induced by CChMVd reflects the spatial distribution and evolutionary behaviour in the infected host of pathogenic (containing a UUUC tetranucleotide) and nonpathogenic (lacking such a pathogenic determinant) variants; and RNA silencing is involved in the initiation of the chlorosis in symptomatic leaf sectors through a viroid-derived small RNA containing the pathogenic determinant that directs AGO1-mediated cleavage of the mRNA encoding the chloroplastic transketolase. This study provides the first evidence that colonization of leaf tissues by CChMVd is characterized by segregating variant populations differing in pathogenicity and with the ability to colonize leaf sectors (bottlenecks) and exclude other variants (superinfection exclusion). Importantly, no specific pathogenic viroid variants were found in the chlorotic spots caused by chrysanthemum stunt viroid (Pospiviroidae), thus establishing a clear distinction on how members of the two viroid families trigger chlorosis in the same host.


Assuntos
Chrysanthemum , Viroides , Viroides/genética , Interferência de RNA , Doenças das Plantas , Chrysanthemum/genética , RNA Mensageiro , RNA Viral/genética
6.
Plant Physiol Biochem ; 199: 107713, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37126903

RESUMO

Cassava (Manihot esculenta Crantz) is a predominant food security crop in several developing countries. Its storage roots, rich in carbohydrate, are deficient in essential micronutrients, including provitamin A carotenoids. Increasing carotenoid content in cassava storage roots is important to reduce the incidence of vitamin A deficiency, a public health problem in sub-Saharan Africa. However, cassava improvement advances slowly, mainly due to limited information on the molecular factors influencing ß-carotene accumulation in cassava. To address this problem, we performed comparative transcriptomic and untargeted metabolic analyses of roots and leaves of eleven African cassava landraces ranging from white to deep yellow colour, to uncover regulators of carotenoid biosynthesis and accumulation with conserved function in yellow cassava roots. Sequence analysis confirmed the presence of a mutation, known to influence ß-carotene content, in PSY transcripts of deep yellow but not of pale yellow genotypes. We identified genes and metabolites with expression and accumulation levels significantly associated with ß-carotene content. Particularly an increased activity of the abscisic acid catabolism pathway together with a reduced amount of L-carnitine, may be related to the carotenoid pathway flux, higher in yellow than in white storage roots. In fact, NCED_3.1 was specifically expressed at a lower level in all yellow genotypes suggesting that it could be a potential target for increasing carotenoid accumulation in cassava. These results expand the knowledge on metabolite compositions and molecular mechanisms influencing carotenoid biosynthesis and accumulation in cassava and provide novel information for biotechnological applications and genetic improvement of cassava with high nutritional values.


Assuntos
Manihot , beta Caroteno , beta Caroteno/análise , Vitamina A/análise , Vitamina A/metabolismo , Vitaminas/análise , Vitaminas/metabolismo , Manihot/genética , Manihot/metabolismo , Transcriptoma/genética , Carotenoides/metabolismo , Verduras , Metaboloma
7.
Viruses ; 14(10)2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36298820

RESUMO

Viroid and viroid-like satellite RNAs are infectious, circular, non-protein coding RNAs reported in plants only so far. Some viroids (family Avsunviroidae) and viroid-like satellite RNAs share self-cleaving activity mediated by hammerhead ribozymes (HHRzs) endowed in both RNA polarity strands. Using a homology-independent method based on the search for conserved structural motifs of HHRzs in reads and contigs from high-throughput sequenced RNAseq libraries, we identified a novel small (550 nt) viroid-like RNA in a library from a Citrus reticulata tree. Such a viroid-like RNA contains a HHRz in both polarity strands. Northern blot hybridization assays showed that circular forms of both polarity strands of this RNA (tentatively named citrus transiently-associated hammerhead viroid-like RNA1 (CtaHVd-LR1)) exist, supporting its replication through a symmetric pathway of the rolling circle mechanism. CtaHVd-LR1 adopts a rod-like conformation and has the typical features of quasispecies. Its HHRzs were shown to be active during transcription and in the absence of any protein. CtaHVd-LR1 was not graft-transmissible, and after its first identification, it was not found again in the original citrus source when repeatedly searched in the following years, suggesting that it was actually not directly associated with the plant. Therefore, the possibility that this novel self-cleaving viroid-like RNA is actually associated with another organism (e.g., a fungus), in turn, transiently associated with citrus plants, is proposed.


Assuntos
Citrus , RNA Catalítico , Viroides , Viroides/genética , Viroides/metabolismo , RNA Catalítico/genética , RNA/genética , Árvores , Citrus/genética , RNA Viral/metabolismo , RNA Satélite , Plantas/genética , Conformação de Ácido Nucleico
8.
Int J Mol Sci ; 23(7)2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35409340

RESUMO

Plant small RNAs (sRNAs) are a heterogeneous group of noncoding RNAs with a length of 20-24 nucleotides that are widely studied due to their importance as major regulators in various biological processes. sRNAs are divided into two main classes-microRNAs (miRNAs) and small interfering RNAs (siRNAs)-which differ in their biogenesis and functional pathways. Their identification and enrichment with new structural variants would not be possible without the use of various high-throughput sequencing (NGS) techniques, allowing for the detection of the total population of sRNAs in plants. Classifying sRNAs and predicting their functional role based on such high-performance datasets is a nontrivial bioinformatics task, as plants can generate millions of sRNAs from a variety of biosynthetic pathways. Over the years, many computing tools have been developed to meet this challenge. Here, we review more than 35 tools developed specifically for plant sRNAs over the past few years and explore some of their basic algorithms for performing tasks related to predicting, identifying, categorizing, and quantifying individual sRNAs in plant samples, as well as visualizing the results of these analyzes. We believe that this review will be practical for biologists who want to analyze their plant sRNA datasets but are overwhelmed by the number of tools available, thus answering the basic question of how to choose the right one for a particular study.


Assuntos
Biologia Computacional , MicroRNAs , Biologia Computacional/métodos , Regulação da Expressão Gênica de Plantas , Sequenciamento de Nucleotídeos em Larga Escala , MicroRNAs/metabolismo , Plantas/genética , Plantas/metabolismo , RNA de Plantas/metabolismo , RNA Interferente Pequeno/metabolismo
9.
Plant Cell Environ ; 45(6): 1779-1795, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35229892

RESUMO

Despite the importance of storage root (SR) organs for cassava and the other root crops yield, their developmental origin is poorly understood. Here we use multiple approaches to shed light on the initial stages of root development demonstrating that SR and fibrous roots (FR) follow different rhizogenic processes. Transcriptome analysis carried out on roots collected before, during and after root bulking highlighted early and specific activation of a number of functions essential for root swelling and identified root-specific genes able to effectively discriminate emerging FR and SR. Starch and sugars start to accumulate at a higher rate in SR before they swell but only after parenchyma tissue has been produced. Finally, using non-destructive computed tomography measurements, we show that SR (but not FR) contain, since their emergence from the stem, an inner channel structure in continuity with the stem secondary xylem, indicating that SR derive from a distinct rhizogenic process compared with FR.


Assuntos
Manihot , Regulação da Expressão Gênica de Plantas , Manihot/genética , Raízes de Plantas , Amido , Xilema
10.
PLoS One ; 16(7): e0253555, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34288936

RESUMO

Cassava is an important food security crop in tropical regions of the world. Cassava improvement by breeding is limited by its delayed and poor production of flowers, such that cassava flowering under field conditions indirectly lengthens the breeding cycle. By studying genotype and environment interaction under two Nigerian field conditions (Ubiaja and Ibadan) and three controlled temperature conditions (22°C/18°C, 28/24°C and 34/30°C (day/night)), we found that while early flowering genotypes flowered at similar times and rates under all growing conditions (unfavorable and favorable field and controlled-temperature environments), late flowering genotypes were environmentally sensitive such that they were substantially delayed in unfavorable environments. On the basis of nodes-to-flower, flowering of late genotypes approached the flowering time of early flowering genotypes under relatively cool Ubiaja field conditions and in growth chambers at 22°C, whereas warmer temperatures elicited a delaying effect. Analysis of transcriptomes from leaves of field and controlled-temperature environments revealed that conditions which promote early flowering in cassava have low expression of the flowering repressor gene TEMPRANILLO 1 (TEM1), before and after flowering. Expression data of field plants showed that the balance between flower stimulatory and inhibitory signaling appeared to correlate with flowering time across the environments and genotypes.


Assuntos
Flores/crescimento & desenvolvimento , Interação Gene-Ambiente , Manihot/genética , RNA de Plantas/genética , Transcriptoma , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genótipo , Manihot/crescimento & desenvolvimento , Nigéria , RNA de Plantas/biossíntese , Temperatura , Fatores de Tempo
11.
Int J Mol Sci ; 22(7)2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33918424

RESUMO

Viroids are infectious non-coding RNAs that infect plants. During infection, viroid RNAs are targeted by Dicer-like proteins, generating viroid-derived small RNAs (vd-sRNAs) that can guide the sequence specific cleavage of cognate host mRNAs via an RNA silencing mechanism. To assess the involvement of these pathways in pathogenesis associated with nuclear-replicating viroids, high-throughput sequencing of sRNAs and degradome analysis were carried out on tomato and Nicotiana benthamiana plants infected by potato spindle tuber viroid (PSTVd). Both hosts develop similar stunting and leaf curling symptoms when infected by PSTVd, thus allowing comparative analyses. About one hundred tomato mRNAs potentially targeted for degradation by vd-sRNAs were initially identified. However, data from biological replicates and comparisons between mock and infected samples reduced the number of bona fide targets-i.e., those identified with high confidence in two infected biological replicates but not in the mock controls-to only eight mRNAs that encode proteins involved in development, transcription or defense. Somewhat surprisingly, results of RT-qPCR assays revealed that the accumulation of only four of these mRNAs was inhibited in the PSTVd-infected tomato. When these analyses were extended to mock inoculated and PSTVd-infected N. benthamiana plants, a completely different set of potential mRNA targets was identified. The failure to identify homologous mRNA(s) targeted by PSTVd-sRNA suggests that different pathways could be involved in the elicitation of similar symptoms in these two species. Moreover, no significant modifications in the accumulation of miRNAs and in the cleavage of their targeted mRNAs were detected in the infected tomato plants with respect to the mock controls. Taken together, these data suggest that stunting and leaf curling symptoms induced by PSTVd are elicited by a complex plant response involving multiple mechanisms, with RNA silencing being only one of the possible components.


Assuntos
Interações Hospedeiro-Patógeno , Interferência de RNA , Viroides/fisiologia , Solanum lycopersicum , RNA Mensageiro/metabolismo , Nicotiana
12.
J Exp Bot ; 72(10): 3688-3703, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33712830

RESUMO

Cassava storage roots are among the most important root crops worldwide, and represent one of the most consumed staple foods in sub-Saharan Africa. The vegetatively propagated tropical shrub can form many starchy tuberous roots from its stem. These storage roots are formed through the activation of secondary root growth processes. However, the underlying genetic regulation of storage root development is largely unknown. Here we report distinct structural and transcriptional changes occurring during the early phases of storage root development. A pronounced increase in auxin-related transcripts and the transcriptional activation of secondary growth factors, as well as a decrease in gibberellin-related transcripts were observed during the early stages of secondary root growth. This was accompanied by increased cell wall biosynthesis, most notably increased during the initial xylem expansion within the root vasculature. Starch storage metabolism was activated only after the formation of the vascular cambium. The formation of non-lignified xylem parenchyma cells and the activation of starch storage metabolism coincided with increased expression of the KNOX/BEL genes KNAT1, PENNYWISE, and POUND-FOOLISH, indicating their importance for proper xylem parenchyma function.


Assuntos
Câmbio , Manihot , Câmbio/genética , Câmbio/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos , Manihot/genética , Manihot/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo
13.
Plant J ; 102(6): 1202-1219, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31950549

RESUMO

Cassava is an important staple crop in sub-Saharan Africa, due to its high productivity even on nutrient poor soils. The metabolic characteristics underlying this high productivity are poorly understood including the mode of photosynthesis, reasons for the high rate of photosynthesis, the extent of source/sink limitation, the impact of environment, and the extent of variation between cultivars. Six commercial African cassava cultivars were grown in a greenhouse in Erlangen, Germany, and in the field in Ibadan, Nigeria. Source leaves, sink leaves, stems and storage roots were harvested during storage root bulking and analyzed for sugars, organic acids, amino acids, phosphorylated intermediates, minerals, starch, protein, activities of enzymes in central metabolism and yield traits. High ratios of RuBisCO:phosphoenolpyruvate carboxylase activity support a C3 mode of photosynthesis. The high rate of photosynthesis is likely to be attributed to high activities of enzymes in the Calvin-Benson cycle and pathways for sucrose and starch synthesis. Nevertheless, source limitation is indicated because root yield traits correlated with metabolic traits in leaves rather than in the stem or storage roots. This situation was especially so in greenhouse-grown plants, where irradiance will have been low. In the field, plants produced more storage roots. This was associated with higher AGPase activity and lower sucrose in the roots, indicating that feedforward loops enhanced sink capacity in the high light and low nitrogen environment in the field. Overall, these results indicated that carbon assimilation rate, the K battery, root starch synthesis, trehalose, and chlorogenic acid accumulation are potential target traits for genetic improvement.


Assuntos
Manihot/metabolismo , Raízes de Plantas/metabolismo , Metabolismo dos Carboidratos , Produção Agrícola , Manihot/crescimento & desenvolvimento , Redes e Vias Metabólicas , Fotossíntese , Folhas de Planta/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Caules de Planta/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo
14.
J Virol ; 88(20): 11933-45, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25100851

RESUMO

The identification of viroid-derived small RNAs (vd-sRNAs) of 21 to 24 nucleotides (nt) in plants infected by viroids (infectious non-protein-coding RNAs of just 250 to 400 nt) supports their targeting by Dicer-like enzymes, the first host RNA-silencing barrier. However, whether viroids, like RNA viruses, are also targeted by the RNA-induced silencing complex (RISC) remains controversial. At the RISC core is one Argonaute (AGO) protein that, guided by endogenous or viral sRNAs, targets complementary RNAs. To examine whether AGO proteins also load vd-sRNAs, leaves of Nicotiana benthamiana infected by potato spindle tuber viroid (PSTVd) were agroinfiltrated with plasmids expressing epitope-tagged versions of AGO1, AGO2, AGO3, AGO4, AGO5, AGO6, AGO7, AGO9, and AGO10 from Arabidopsis thaliana. Immunoprecipitation analyses of the agroinfiltrated halos revealed that all AGOs except AGO6, AGO7, and AGO10 associated with vd-sRNAs: AGO1, AGO2, and AGO3 preferentially with those of 21 and 22 nt, while AGO4, AGO5, and AGO9 additionally bound those of 24 nt. Deep-sequencing analyses showed that sorting of vd-sRNAs into AGO1, AGO2, AGO4, and AGO5 depended essentially on their 5'-terminal nucleotides, with the profiles of the corresponding AGO-loaded vd-sRNAs adopting specific hot spot distributions along the viroid genome. Furthermore, agroexpression of AGO1, AGO2, AGO4, and AGO5 on PSTVd-infected tissue attenuated the level of the genomic RNAs, suggesting that they, or their precursors, are RISC targeted. In contrast to RNA viruses, PSTVd infection of N. benthamiana did not affect miR168-mediated regulation of the endogenous AGO1, which loaded vd-sRNAs with specificity similar to that of its A. thaliana counterpart. Importance: To contain invaders, particularly RNA viruses, plants have evolved an RNA-silencing mechanism relying on the generation by Dicer-like (DCL) enzymes of virus-derived small RNAs of 21 to 24 nucleotides (nt) that load and guide Argonaute (AGO) proteins to target and repress viral RNA. Viroids, despite their minimal genomes (non-protein-coding RNAs of only 250 to 400 nt), infect and incite disease in plants. The accumulation in these plants of 21- to 24-nt viroid-derived small RNAs (vd-sRNAs) supports the notion that DCLs also target viroids but does not clarify whether vd-sRNAs activate one or more AGOs. Here, we show that in leaves of Nicotiana benthamiana infected by potato spindle tuber viroid, the endogenous AGO1 and distinct AGOs from Arabidopsis thaliana that were overexpressed were associated with vd-sRNAs displaying the same properties (5'-terminal nucleotide and size) previously established for endogenous and viral small RNAs. Overexpression of AGO1, AGO2, AGO4, and AGO5 attenuated viroid accumulation, supporting their role in antiviroid defense.


Assuntos
Proteínas Argonautas/metabolismo , Vírus de Plantas/genética , RNA Viral/metabolismo , Proteínas de Ligação a RNA/metabolismo , Solanum tuberosum/virologia , Viroides/metabolismo , Nicotiana/virologia
15.
BMC Syst Biol ; 8 Suppl 2: I1, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25032990

RESUMO

To integrate heterogeneous and large omics data constitutes not only a conceptual challenge but a practical hurdle in the daily analysis of omics data. With the rise of novel omics technologies and through large-scale consortia projects, biological systems are being further investigated at an unprecedented scale generating heterogeneous and often large data sets. These data-sets encourage researchers to develop novel data integration methodologies. In this introduction we review the definition and characterize current efforts on data integration in the life sciences. We have used a web-survey to assess current research projects on data-integration to tap into the views, needs and challenges as currently perceived by parts of the research community.


Assuntos
Biologia Computacional/métodos , Animais , Disciplinas das Ciências Biológicas , Biologia Computacional/normas , Coleta de Dados , Humanos , Pesquisa
16.
Molecules ; 19(5): 5611-23, 2014 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-24786846

RESUMO

The goal of the present paper is to establish and validate the link between cancer diagnosis and therapy by microRNAs detection. The induction in vitro of some specific microRNAs after treatment with MDR ligands has been outlined. Starting from the results obtained by in vitro induction of MDCK and MDCK-MDR1 cells treated by a MDR1 ligand, a new scenario in the early diagnosis and chemotherapy could be disclosed. To corroborate this perspective a short overview on pancreatic cancer diagnosis and chemotherapeutic treatment has been reported.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Resistência a Múltiplos Medicamentos/genética , Resistencia a Medicamentos Antineoplásicos/genética , MicroRNAs/genética , Animais , Cães , Humanos , Células Madin Darby de Rim Canino , Neoplasias/tratamento farmacológico , Neoplasias/genética
17.
Biochimie ; 94(7): 1474-80, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22738729

RESUMO

Despite being composed by a single-stranded, circular, non-protein-coding RNA of just 246-401 nucleotides (nt), viroids can incite in their host plants symptoms similar to those caused by DNA and RNA viruses, which have genomes at least 20-fold bigger and encode proteins. On the other hand, certain non-protein-coding plant satellite RNAs display structural similarities with viroids but for replication and transmission they need to parasitize specific helper viruses (modifying concomitantly the symptoms they induce). While phenotypic alterations accompanying infection by viruses may partly result from expressing the proteins they code for, how the non-protein-coding viroids (and satellite RNAs) cause disease remains a conundrum. Initial ideas on viroid pathogenesis focused on a direct interaction of the genomic RNA with host proteins resulting in their malfunction. With the advent of RNA silencing, it was alternatively proposed that symptoms could be produced by viroid-derived small RNAs (vd-sRNAs) -generated by the host defensive machinery- targeting specific host mRNA or DNA sequences for post-transcriptional or transcriptional gene silencing, respectively, a hypothesis that could also explain pathogenesis of non-protein-coding satellite RNAs. Evidence sustaining this view has been circumstantial, but recent data provide support for it in two cases: i) the yellow symptoms associated with a specific satellite RNA result from a 22-nt small RNA (derived from the 24-nt fragment of the satellite genome harboring the pathogenic determinant), which is complementary to a segment of the mRNA of the chlorophyll biosynthetic gene CHLI and targets it for cleavage by the RNA silencing machinery, and ii) two 21-nt vd-sRNAS containing the pathogenic determinant of the albino phenotype induced by a chloroplast-replicating viroid target for cleavage the mRNA coding for the chloroplastic heat-shock protein 90 via RNA silencing too. This evidence, which is compelling for the satellite RNA, does not exclude alternative mechanisms.


Assuntos
Viroides/genética , Viroides/patogenicidade , Viroses/virologia , Interferência de RNA , RNA Satélite/genética , RNA Viral/genética
18.
Plant J ; 70(6): 991-1003, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22332758

RESUMO

How viroids, tiny non-protein-coding RNAs (~250-400 nt), incite disease is unclear. One hypothesis is that viroid-derived small RNAs (vd-sRNAs; 21-24 nt) resulting from the host defensive response, via RNA silencing, may target for cleavage cell mRNAs and trigger a signal cascade, eventually leading to symptoms. Peach latent mosaic viroid (PLMVd), a chloroplast-replicating viroid, is particularly appropriate to tackle this question because it induces an albinism (peach calico, PC) strictly associated with variants containing a specific 12-14-nt hairpin insertion. By dissecting albino and green leaf sectors of Prunus persica (peach) seedlings inoculated with PLMVd natural and artificial variants, and cloning their progeny, we have established that the hairpin insertion sequence is involved in PC. Furthermore, using deep sequencing, semi-quantitative RT-PCR and RNA ligase-mediated rapid amplification of cDNA ends (RACE), we have determined that two PLMVd-sRNAs containing the PC-associated insertion (PC-sRNA8a and PC-sRNA8b) target for cleavage the mRNA encoding the chloroplastic heat-shock protein 90 (cHSP90), thus implicating RNA silencing in the modulation of host gene expression by a viroid. Chloroplast malformations previously reported in PC-expressing tissues are consistent with the downregulation of cHSP90, which participates in chloroplast biogenesis and plastid-to-nucleus signal transduction in Arabidopsis. Besides PC-sRNA8a and PC-sRNA8b, both deriving from the less-abundant PLMVd (-) strand, we have identified other PLMVd-sRNAs potentially targeting peach mRNAs. These results also suggest that sRNAs derived from other PLMVd regions may downregulate additional peach genes, ultimately resulting in other symptoms or in a more favorable host environment for viroid infection.


Assuntos
Cloroplastos/virologia , Interferência de RNA , Estabilidade de RNA , RNA Mensageiro/metabolismo , RNA Viral/genética , Viroides/genética , Sequência de Bases , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Mutagênese Insercional , Conformação de Ácido Nucleico , Doenças das Plantas/genética , Doenças das Plantas/virologia , Prunus/genética , Prunus/virologia , RNA Mensageiro/genética , Análise de Sequência de RNA
19.
Plant Mol Biol ; 75(6): 607-19, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21327514

RESUMO

To get an insight into the host RNA silencing defense induced by Citrus tristeza virus (CTV) and into the counter defensive reaction mediated by its three silencing suppressors (p25, p20 and p23), we have examined by deep sequencing (Solexa-Illumina) the small RNAs (sRNAs) in three virus-host combinations. Our data show that CTV sRNAs: (i) represent more than 50% of the total sRNAs in Mexican lime and sweet orange (where CTV reaches relatively high titers), but only 3.5% in sour orange (where the CTV titer is significantly lower), (ii) are predominantly of 21-22-nt, with a biased distribution of their 5' nucleotide and with those of (+) polarity accumulating in a moderate excess, and (iii) derive from essentially all the CTV genome (ca. 20 kb), as revealed by its complete reconstruction from viral sRNA contigs, but adopt an asymmetric distribution with a prominent hotspot covering approximately the 3'-terminal 2,500 nt. These results suggest that the citrus homologues of Dicer-like (DCL) 4 and 2 most likely mediate the genesis of the 21 and 22 nt CTV sRNAs, respectively, and show that both ribonucleases act not only on the genomic RNA but also on the 3' co-terminal subgenomic RNAs and, particularly, on their double-stranded forms. The plant sRNA profile, very similar and dominated by the 24-nt sRNAs in the three mock-inoculated controls, was minimally affected by CTV infection in sour orange, but exhibited a significant reduction of the 24-nt sRNAs in Mexican lime and sweet orange. We have also identified novel citrus miRNAs and determined how CTV influences their accumulation.


Assuntos
Citrus aurantiifolia/virologia , Citrus sinensis/virologia , Closterovirus/genética , Doenças das Plantas/virologia , Interferência de RNA/fisiologia , RNA de Plantas/genética , RNA Interferente Pequeno/genética , RNA Viral/genética , Regiões 3' não Traduzidas/genética , Regiões 3' não Traduzidas/fisiologia , Northern Blotting , Citrus aurantiifolia/genética , Citrus sinensis/genética , Closterovirus/fisiologia , Doenças das Plantas/genética , Imunidade Vegetal/genética , RNA de Plantas/fisiologia , RNA Interferente Pequeno/fisiologia , RNA Viral/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
Virology ; 408(1): 49-56, 2010 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-20875658

RESUMO

Virus-derived short interfering RNAs (vsiRNAs) isolated from grapevine V. vinifera Pinot Noir clone ENTAV 115 were analyzed by high-throughput sequencing using the Illumina Solexa platform. We identified and characterized vsiRNAs derived from grapevine field plants naturally infected with different viruses belonging to the genera Foveavirus, Maculavirus, Marafivirus and Nepovirus. These vsiRNAs were mainly of 21 and 22 nucleotides (nt) in size and were discontinuously distributed throughout Grapevine rupestris stem-pitting associated virus (GRSPaV) and Grapevine fleck virus (GFkV) genomic RNAs. Among the studied viruses, GRSPaV and GFkV vsiRNAs had a 5' terminal nucleotide bias, which differed from that described for experimental viral infections in Arabidopsis thaliana. VsiRNAs were found to originate from both genomic and antigenomic GRSPaV RNA strands, whereas with the grapevine tymoviruses GFkV and Grapevine Red Globe associated virus (GRGV), the large majority derived from the antigenomic viral strand, a feature never observed in other plant-virus interactions.


Assuntos
Doenças das Plantas/virologia , Vírus de RNA/genética , RNA Interferente Pequeno/genética , RNA Viral/genética , Vitis/virologia , Vírus de Plantas/genética , Vírus de RNA/crescimento & desenvolvimento , RNA Interferente Pequeno/isolamento & purificação , RNA Viral/isolamento & purificação , Análise de Sequência de DNA/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...