Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; 8(2)2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28351914

RESUMO

Bacterial cells are encased in and stabilized by a netlike peptidoglycan (PGN) cell wall that undergoes turnover during bacterial growth. PGN turnover fragments are frequently salvaged by the cells via a pathway referred to as PGN recycling. Two different routes for the recycling of the cell wall sugar N-acetylmuramic acid (MurNAc) have been recognized in bacteria. In Escherichia coli and related enterobacteria, as well as in most Gram-positive bacteria, MurNAc is recovered via a catabolic route requiring a MurNAc 6-phosphate etherase (MurQ in E. coli) enzyme. However, many Gram-negative bacteria, including Pseudomonas species, lack a MurQ ortholog and use an alternative, anabolic recycling route that bypasses the de novo biosynthesis of uridyldiphosphate (UDP)-MurNAc, the first committed precursor of PGN. Bacteria featuring the latter pathway become intrinsically resistant to the antibiotic fosfomycin, which targets the de novo biosynthesis of UDP-MurNAc. We report here the identification and characterization of a phosphatase enzyme, named MupP, that had been predicted to complete the anabolic recycling pathway of Pseudomonas species but has remained unknown so far. It belongs to the large haloacid dehalogenase family of phosphatases and specifically converts MurNAc 6-phosphate to MurNAc. A ΔmupP mutant of Pseudomonas putida was highly susceptible to fosfomycin, accumulated large amounts of MurNAc 6-phosphate, and showed lower levels of UDP-MurNAc than wild-type cells, altogether consistent with a role for MupP in the anabolic PGN recycling route and as a determinant of intrinsic resistance to fosfomycin.IMPORTANCE Many Gram-negative bacteria, but not E. coli, make use of a cell wall salvage pathway that contributes to the pool of UDP-MurNAc, the first committed precursor of cell wall synthesis in bacteria. This salvage pathway is of particular interest because it confers intrinsic resistance to the antibiotic fosfomycin, which blocks de novo UDP-MurNAc biosynthesis. Here we identified and characterized a previously missing enzyme within the salvage pathway, the MurNAc 6-phosphate phosphatase MupP of P. putida MupP, together with the other enzymes of the anabolic recycling pathway, AnmK, AmgK, and MurU, yields UDP-MurNAc, renders bacteria intrinsically resistant to fosfomycin, and thus may serve as a novel drug target for antimicrobial therapy.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana , Fosfomicina/farmacologia , Ácidos Murâmicos/metabolismo , Peptidoglicano/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Pseudomonas putida/efeitos dos fármacos , Pseudomonas putida/enzimologia , Proteínas de Bactérias/genética , Parede Celular/metabolismo , Deleção de Genes , Monoéster Fosfórico Hidrolases/genética , Pseudomonas putida/genética
2.
J Biol Chem ; 290(17): 10804-13, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25767118

RESUMO

The N-acetylmuramic acid α-1-phosphate (MurNAc-α1-P) uridylyltransferase MurU catalyzes the synthesis of uridine diphosphate (UDP)-MurNAc, a crucial precursor of the bacterial peptidoglycan cell wall. MurU is part of a recently identified cell wall recycling pathway in Gram-negative bacteria that bypasses the general de novo biosynthesis of UDP-MurNAc and contributes to high intrinsic resistance to the antibiotic fosfomycin, which targets UDP-MurNAc de novo biosynthesis. To provide insights into substrate binding and specificity, we solved crystal structures of MurU of Pseudomonas putida in native and ligand-bound states at high resolution. With the help of these structures, critical enzyme-substrate interactions were identified that enable tight binding of MurNAc-α1-P to the active site of MurU. The MurU structures define a "minimal domain" required for general nucleotidyltransferase activity. They furthermore provide a structural basis for the chemical design of inhibitors of MurU that could serve as novel drugs in combination therapy against multidrug-resistant Gram-negative pathogens.


Assuntos
Nucleotidiltransferases/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Clonagem Molecular , Cristalografia por Raios X , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/enzimologia , Bactérias Gram-Negativas/patogenicidade , Magnésio/química , Modelos Moleculares , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Conformação Proteica , Estrutura Terciária de Proteína , Pseudomonas putida/enzimologia , Pseudomonas putida/genética , Especificidade por Substrato , Uridina Difosfato Ácido N-Acetilmurâmico/biossíntese
3.
Microb Drug Resist ; 20(3): 231-7, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24819062

RESUMO

Gram-negative bacteria recycle as much as half of their cell wall per generation. Here we show that interference with cell wall recycling in Pseudomonas aeruginosa strains results in four- to eight-fold increased susceptibility to the antibiotic fosfomycin, pushing the minimal inhibitory concentration for strains PA14 and PA01 to therapeutically appropriate values of 2-4 and 8-16 mg/L, respectively. A newly discovered metabolic pathway that connects cell wall recycling with peptidoglycan de novo biosynthesis is responsible for the high intrinsic resistance of P. aeruginosa to fosfomycin. The pathway comprises an anomeric cell wall amino sugar kinase (AmgK) and an uridylyl transferase (MurU), which together convert N-acetylmuramic acid (MurNAc) through MurNAc α-1-phosphate to uridine diphosphate (UDP)-MurNAc, thereby bypassing the fosfomycin-sensitive de novo synthesis of UDP-MurNAc. Thus, inhibition of peptidoglycan recycling can be applied as a new strategy for the combinatory therapy against multidrug-resistant P. aeruginosa strains.


Assuntos
Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana/efeitos dos fármacos , Fosfomicina/farmacologia , Nucleotidiltransferases/metabolismo , Proteínas PII Reguladoras de Nitrogênio/metabolismo , Peptidoglicano/metabolismo , Fosfotransferases/metabolismo , Pseudomonas aeruginosa/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Transporte Biológico/efeitos dos fármacos , Parede Celular/química , Parede Celular/efeitos dos fármacos , Parede Celular/genética , Parede Celular/metabolismo , Expressão Gênica , Redes e Vias Metabólicas , Testes de Sensibilidade Microbiana , Ácidos Murâmicos/metabolismo , Nucleotidiltransferases/genética , Proteínas PII Reguladoras de Nitrogênio/genética , Fosfotransferases/genética , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Uridina Difosfato Ácido N-Acetilmurâmico/metabolismo
4.
Nat Chem Biol ; 9(8): 491-3, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23831760

RESUMO

We report a salvage pathway in Gram-negative bacteria that bypasses de novo biosynthesis of UDP N-acetylmuramic acid (UDP-MurNAc), the first committed peptidoglycan precursor, and thus provides a rationale for intrinsic fosfomycin resistance. The anomeric sugar kinase AmgK and the MurNAc α-1-phosphate uridylyl transferase MurU, defining this new cell wall sugar-recycling route in Pseudomonas putida, were characterized and engineered into Escherichia coli, channeling external MurNAc directly to peptidoglycan biosynthesis.


Assuntos
Parede Celular/metabolismo , Peptidoglicano/biossíntese , Pseudomonas putida/metabolismo , Parede Celular/química , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Peptidoglicano/química , Pseudomonas putida/citologia , Pseudomonas putida/enzimologia
5.
J Bacteriol ; 192(22): 5943-52, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20851900

RESUMO

Molybdenum (Mo) is an important trace element that is toxic at high concentrations. To resolve the mechanisms underlying Mo toxicity, Rhodobacter capsulatus mutants tolerant to high Mo concentrations were isolated by random transposon Tn5 mutagenesis. The insertion sites of six independent isolates mapped within the same gene predicted to code for a permease of unknown function located in the cytoplasmic membrane. During growth under Mo-replete conditions, the wild-type strain accumulated considerably more Mo than the permease mutant. For mutants defective for the permease, the high-affinity molybdate importer ModABC, or both transporters, in vivo Mo-dependent nitrogenase (Mo-nitrogenase) activities at different Mo concentrations suggested that ModABC and the permease import molybdate in nanomolar and micromolar ranges, respectively. Like the permease mutants, a mutant defective for ATP sulfurylase tolerated high Mo concentrations, suggesting that ATP sulfurylase is the main target of Mo inhibition in R. capsulatus. Sulfate-dependent growth of a double mutant defective for the permease and the high-affinity sulfate importer CysTWA was reduced compared to those of the single mutants, implying that the permease plays an important role in sulfate uptake. In addition, permease mutants tolerated higher tungstate and vanadate concentrations than the wild type, suggesting that the permease acts as a general oxyanion importer. We propose to call this permease PerO (for oxyanion permease). It is the first reported bacterial molybdate transporter outside the ABC transporter family.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Molibdênio/metabolismo , Molibdênio/toxicidade , Rhodobacter capsulatus/efeitos dos fármacos , Rhodobacter capsulatus/metabolismo , Sulfato Adenililtransferase/antagonistas & inibidores , Ânions , Proteínas de Bactérias/genética , Elementos de DNA Transponíveis , DNA Bacteriano/química , DNA Bacteriano/genética , Farmacorresistência Bacteriana , Proteínas de Membrana Transportadoras/genética , Dados de Sequência Molecular , Mutagênese Insercional , Rhodobacter capsulatus/genética , Análise de Sequência de DNA , Sulfato Adenililtransferase/genética , Compostos de Tungstênio/metabolismo , Compostos de Tungstênio/toxicidade , Vanadatos/metabolismo , Vanadatos/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...