Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Parasitol Res ; 2020: 3560310, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32411419

RESUMO

INTRODUCTION: Knockdown resistance (kdr) is strongly linked to pyrethroid insecticide resistance in Anopheles gambiae in Africa, which may have vital significance to the current increased use of pyrethroid-treated bed net programmes. The study is aimed at determining species composition, levels of insecticide resistance, and knockdown patterns in Anopheles gambiae sensu lato in areas with and areas without insecticide resistance in Teso North and Teso South subcounties, Western Kenya. MATERIALS AND METHODS: For WHO vulnerability tests, mosquito larvae were sampled using a dipper, reared into 3-5-day-old female mosquitoes (4944 at 100 mosquitoes per insecticide) which were exposed to 0.75% permethrin, 0.05% deltamethrin, and 0.1% bendiocarb using the WHO tube assay method. Species identification and kdr East gene PCRs were also performed on randomly selected mosquitoes from the collections; including adult mosquitoes (3448) sampled using standard collection methods. RESULTS: Anopheles gambiae sensu stricto were the majority in terms of species composition at 78.9%. Bendiocarb caused 100% mortality while deltamethrin had higher insecticidal effects (77%) on female mosquitoes than permethrin (71%). Susceptible Kengatunyi cluster had higher proportion of An. arabiensis (20.9%) than resistant Rwatama (10.7%). Kengatunyi mosquitoes exposed to deltamethrin had the highest KDT50 R of 8.2. Both Anopheles gambiae sensu stricto and Anopheles arabiensis had equal S allelic frequency of 0.84. Indoor resting mosquitoes had 100% mortality rate after 24 h since exposure. Overall SS genotypic frequency in Teso North and Teso South subcounties was 79.4% against 13.7% homozygous LL genotype and 6.9% heterozygous LS genotype. There was a significant difference (ρ < 0.05) in S allele frequencies between Kengatunyi (0.61) and Rwatama (0.95). Mosquito samples collected in 2013 had the highest S allelic frequency of 0.87. Discussion. Most likely, the higher the selection pressure exerted indoors by insecticidal nets, the higher were the resistance alleles. Use of pyrethroid impregnated nets and agrochemicals may have caused female mosquitoes to select for pyrethroid resistance. Different modes of action and chemical properties in different types of pyrethroids aggravated by a variety of edaphic and climatic factors may have caused different levels of susceptibility in both indoor and outdoor vectors to pyrethroids and carbamate. Species composition and populations in each collection method may have been influenced by insecticide resistance capacity in different species. Conclusions and Recommendations. Both phenotypic and genotypic insecticide resistance levels have been confirmed in Teso North and Teso South subcounties in Western Kenya. Insecticide resistance management practices in Kenya should be fast tracked and harmonized with agricultural sector agrochemical-based activities and legislation, and possibly switch to carbamate use in order to ease selection pressure on pyrethroids which are useable in insecticidal nets and indoor residual spray due to their low human toxicity. The implication of such high resistance levels in mosquitoes collected in Teso subcounties is that resistance is likely to persist and or even increase if monomolecules of permethrin and deltamethrin or both continue to be used in all net- and nonnet-based mosquito control purposes. Usage of mutually reinforcing piperonyl butoxide (PBO) that prohibits particular enzymes vital in metabolic activities inside mosquito systems and has been integrated into pyrethroid-LLINs to create pyrethroid-PBO nets is an extremely viable option.

2.
J Parasitol Res ; 2020: 9423682, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32328298

RESUMO

INTRODUCTION: Behavioural resistance to insecticides restrains the efficacy of vector control tools against mosquito-transmitted diseases. The current study is aimed at determining the impact of insecticide resistance on major malaria vectors' biting, feeding, and resting behaviour in areas with and areas without insecticide resistance in Teso North and Teso South, Busia County, Western Kenya. METHODS: Mosquito larvae were sampled using a dipper, reared into 3-5-day-old female mosquitoes [4944] which were exposed to 0.75% permethrin and 0.05% deltamethrin using World Health Organization tube assay method. Blood meal, species identification, and kdr Eastgene PCRs were also performed on adult mosquitoes sampled using mosquito collection methods [3448]. Biting, feeding, resting, and exiting behaviours of field-collected mosquitoes from five selected clusters were analysed. RESULTS: The lowest Kdr genotypic frequency (SS) proportion was found in female Anophelines collected in Kengatunyi at 58% while Rwatama had the highest genotypic frequency at 93%, thus susceptible and resistant clusters, respectively. The peak hour for mosquito seeking a human bite was between 0300 and 0400 hrs in the resistant cluster and 0400-0500 hrs in the susceptible cluster. The heterozygous mosquitoes maintained the known 2100-2200 hrs peak hour. There was a higher proportion of homozygous susceptible vectors (86.4%) seeking humans indoor than outdoor bitters (78.3%). Mosquito blood meals of human origin were 60% and 87% in susceptible Kengatunyi and resistant Rwatama cluster, respectively. There was significant difference between homozygous-resistant vectors feeding on human blood compared to homozygous susceptible mosquitoes (p ≤ 0.05). The proportion of bovine blood was highest in the susceptible cluster. A higher proportion of homozygous-resistant anophelines were feeding and resting indoors. No heterozygous mosquito was found resting indoor while 4.2% of the mosquitoes were caught while exiting the house through the window. Discussion. A shift in resistant Anopheles gambiae sl highest peak hour of aggressiveness from 2100-2200 hrs to 0300-0400 hrs is a key change in its biting pattern. Due to the development of resistance, mosquitoes no longer have to compete against the time the human host enters into the formerly lethal chemical and or physical barrier in the form of long-lasting insecticide-treated net. No heterozygous LS mosquito rested indoors possibly due to disadvantages of heterozygosity which could have increased their fitness costs as well as energy costs in the presence of the insecticidal agents in the treated nets. Conclusions and recommendations. Out of bed biting by female mosquitoes and partial susceptibility may contribute to residual malaria transmission. Insecticide-resistant vectors have become more endophagic and anthropophillic. Hence, insecticidal nets, zooprophylaxis, and novel repellents are still useful chemical, biological, and physical barriers against human blood questing female mosquitoes. Further studies should be done on genetic changes in mosquitoes and their effects on changing mosquito behaviour.

3.
Afr J Tradit Complement Altern Med ; 7(3): 264-75, 2010 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-21461155

RESUMO

Plant extracts from Warburgia ugandensis Sprague (Family: Canellaceae), Psiadia punctulata Vatke (Family: Compositae) and Chasmanthera dependens Hoschst (Family: Menispermaceae) were tested for activity on Leishmania major promastigotes (Strain IDU/KE/83 = NLB-144) and infected macrophages in vitro. Plants were collected from Baringo district, dried, extracted, weighed and tested for antileishmanial activity. Serial dilutions of the crude extracts were assayed for their activity against Leishmania major in cell free cultures and in infected macrophages in vitro. Inhibitory concentrations and levels of cytotoxicity were determined. Warburgia ugandensis, Psiadia punctulata and Chasmanthera dependens had an IC(50) of 1.114 mg/ml, 2.216 mg/ml and 4.648 mg/ml, respectively. The cytotoxicity of the drugs on BALB/c peritoneal macrophage cells was insignificant as compared to the highly toxic drug of choice Pentostam(®). The supernatants from control and Leishmania infected macrophages were analyzed for their nitrite contents by Griess reaction and nitrite absorbance measured at 540 nm. Warburgia ugandensis (stem bark water extract), Chasmanthera dependens (stem bark water extract) and Psiadia punctulata (stem bark methanol extract) produced 112.3%, 94% and 88.5% more nitric oxide than the untreated infected macrophages respectively. Plant crude extracts had significant (p<0.05) anti-leishmanial and immunomodulative effects but insignificant cytotoxic effects at 1mg/ml concentration. All experiments were performed in triplicate. Statistical analysis of the differences between mean values obtained from the experimental group compared to the controls was done by students't test. ANOVA was used to determine the differences between the various treatment groups. The analysis program Probit was used to determine IC(50)s.


Assuntos
Antiprotozoários/química , Antiprotozoários/uso terapêutico , Leishmania major/efeitos dos fármacos , Leishmaniose/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Antiprotozoários/isolamento & purificação , Antiprotozoários/farmacologia , Asteraceae/química , Imunomodulação , Técnicas In Vitro , Concentração Inibidora 50 , Menispermaceae/química , Camundongos , Camundongos Endogâmicos BALB C , Fitoterapia , Casca de Planta , Folhas de Planta , Plantas Medicinais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...