Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurobiol Dis ; 196: 106512, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38670278

RESUMO

Neurons in the substantia nigra reticulata (SNr) transmit information about basal ganglia output to dozens of brain regions in thalamocortical and brainstem motor networks. Activity of SNr neurons is regulated by convergent input from upstream basal ganglia nuclei, including GABAergic inputs from the striatum and the external globus pallidus (GPe). GABAergic inputs from the striatum convey information from the direct pathway, while GABAergic inputs from the GPe convey information from the indirect pathway. Chronic loss of dopamine, as occurs in Parkinson's disease, disrupts the balance of direct and indirect pathway neurons at the level of the striatum, but the question of how dopamine loss affects information propagation along these pathways outside of the striatum is less well understood. Using a combination of in vivo and slice electrophysiology, we find that dopamine depletion selectively weakens the direct pathway's influence over neural activity in the SNr due to changes in the decay kinetics of GABA-mediated synaptic currents. GABAergic signaling from GPe neurons in the indirect pathway was not affected, resulting in an inversion of the normal balance of inhibitory control over basal ganglia output through the SNr. These results highlight the contribution of cellular mechanisms outside of the striatum that impact the responses of basal ganglia output neurons to the direct and indirect pathways in disease.


Assuntos
Dopamina , Neurônios , Parte Reticular da Substância Negra , Animais , Dopamina/metabolismo , Neurônios/metabolismo , Neurônios/fisiologia , Parte Reticular da Substância Negra/fisiologia , Parte Reticular da Substância Negra/metabolismo , Vias Neurais/fisiologia , Vias Neurais/metabolismo , Camundongos , Masculino , Camundongos Endogâmicos C57BL , Oxidopamina/farmacologia , Ácido gama-Aminobutírico/metabolismo , Neurônios GABAérgicos/fisiologia , Neurônios GABAérgicos/metabolismo
2.
Front Hum Neurosci ; 18: 1320806, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38450221

RESUMO

The Deep Brain Stimulation (DBS) Think Tank XI was held on August 9-11, 2023 in Gainesville, Florida with the theme of "Pushing the Forefront of Neuromodulation". The keynote speaker was Dr. Nico Dosenbach from Washington University in St. Louis, Missouri. He presented his research recently published in Nature inn a collaboration with Dr. Evan Gordon to identify and characterize the somato-cognitive action network (SCAN), which has redefined the motor homunculus and has led to new hypotheses about the integrative networks underpinning therapeutic DBS. The DBS Think Tank was founded in 2012 and provides an open platform where clinicians, engineers, and researchers (from industry and academia) can freely discuss current and emerging DBS technologies, as well as logistical and ethical issues facing the field. The group estimated that globally more than 263,000 DBS devices have been implanted for neurological and neuropsychiatric disorders. This year's meeting was focused on advances in the following areas: cutting-edge translational neuromodulation, cutting-edge physiology, advances in neuromodulation from Europe and Asia, neuroethical dilemmas, artificial intelligence and computational modeling, time scales in DBS for mood disorders, and advances in future neuromodulation devices.

3.
Annu Rev Neurosci ; 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424473

RESUMO

Deep brain stimulation (DBS), a method in which electrical stimulation is delivered to specific areas of the brain, is an effective treatment for managing symptoms of a number of neurological and neuropsychiatric disorders. Clinical access to neural circuits during DBS provides an opportunity to study the functional link between neural circuits and behavior. This review discusses how the use of DBS in Parkinson's disease and dystonia has provided insights into the brain networks and physiological mechanisms that underlie motor control. In parallel, insights from basic science about how patterns of electrical stimulation impact plasticity and communication within neural circuits are transforming DBS from a therapy for treating symptoms to a therapy for treating circuits, with the goal of training the brain out of its diseased state. Expected final online publication date for the Annual Review of Neuroscience, Volume 47 is July 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

4.
Neuron ; 112(1): 56-72.e4, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37909037

RESUMO

A comprehensive understanding of neuronal diversity and connectivity is essential for understanding the anatomical and cellular mechanisms that underlie functional contributions. With the advent of single-cell analysis, growing information regarding molecular profiles leads to the identification of more heterogeneous cell types. Therefore, the need for additional orthogonal recombinase systems is increasingly apparent, as heterogeneous tissues can be further partitioned into increasing numbers of specific cell types defined by multiple features. Critically, new recombinase systems should work together with pre-existing systems without cross-reactivity in vivo. Here, we introduce novel site-specific recombinase systems based on ΦC31 bacteriophage recombinase for labeling multiple cell types simultaneously and a novel viral strategy for versatile and robust intersectional expression of any transgene. Together, our system will help researchers specifically target different cell types with multiple features in the same animal.


Assuntos
Integrases , Recombinases , Animais , Recombinases/genética , Integrases/genética , Vetores Genéticos , Neurônios/metabolismo , Transgenes
5.
Curr Biol ; 33(20): R1060-R1062, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37875082

RESUMO

Reward predictions and prediction errors are encoded in the GPe in a cell type-specific manner. A newly discovered cell type, the Slow Pacemaker, robustly encodes reward value and generates prediction errors in a manner remarkably similar to midbrain dopamine neurons.


Assuntos
Gânglios da Base , Neurônios Dopaminérgicos , Gânglios da Base/fisiologia , Neurônios Dopaminérgicos/fisiologia , Recompensa
6.
Neuron ; 111(14): 2218-2231.e4, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37207651

RESUMO

Optogenetic stimulation of Adora2a receptor-expressing spiny projection neurons (A2A-SPNs) in the striatum drives locomotor suppression and transient punishment, results attributed to activation of the indirect pathway. The sole long-range projection target of A2A-SPNs is the external globus pallidus (GPe). Unexpectedly, we found that inhibition of the GPe drove transient punishment but not suppression of movement. Within the striatum, A2A-SPNs inhibit other SPNs through a short-range inhibitory collateral network, and we found that optogenetic stimuli that drove motor suppression shared a common mechanism of recruiting this inhibitory collateral network. Our results suggest that the indirect pathway plays a more prominent role in transient punishment than in motor control and challenges the assumption that activity of A2A-SPNs is synonymous with indirect pathway activity.


Assuntos
Gânglios da Base , Punição , Corpo Estriado , Globo Pálido/fisiologia , Movimento/fisiologia
8.
J Comput Neurosci ; 51(3): 361-380, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-37266768

RESUMO

Parkinson's disease (PD) and animal models of PD feature enhanced oscillations in several frequency bands in the basal ganglia (BG). Past research has emphasized the enhancement of 13-30 Hz beta oscillations. Recently, however, oscillations in the delta band (0.5-4 Hz) have been identified as a robust predictor of dopamine loss and motor dysfunction in several BG regions in mouse models of PD. In particular, delta oscillations in the substantia nigra pars reticulata (SNr) were shown to lead oscillations in motor cortex (M1) and persist under M1 lesion, but it is not clear where these oscillations are initially generated. In this paper, we use a computational model to study how delta oscillations may arise in the SNr due to projections from the globus pallidus externa (GPe). We propose a network architecture that incorporates inhibition in SNr from oscillating GPe neurons and other SNr neurons. In our simulations, this configuration yields firing patterns in model SNr neurons that match those measured in vivo. In particular, we see the spontaneous emergence of near-antiphase active-predicting and inactive-predicting neural populations in the SNr, which persist under the inclusion of STN inputs based on experimental recordings. These results demonstrate how delta oscillations can propagate through BG nuclei despite imperfect oscillatory synchrony in the source site, narrowing down potential targets for the source of delta oscillations in PD models and giving new insight into the dynamics of SNr oscillations.


Assuntos
Doença de Parkinson , Parte Reticular da Substância Negra , Animais , Camundongos , Globo Pálido , Dopamina , Modelos Neurológicos , Gânglios da Base/fisiologia , Substância Negra/fisiologia
9.
Science ; 374(6564): 201-206, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34618556

RESUMO

Symptoms of neurological diseases emerge through the dysfunction of neural circuits whose diffuse and intertwined architectures pose serious challenges for delivering therapies. Deep brain stimulation (DBS) improves Parkinson's disease symptoms acutely but does not differentiate between neuronal circuits, and its effects decay rapidly if stimulation is discontinued. Recent findings suggest that optogenetic manipulation of distinct neuronal subpopulations in the external globus pallidus (GPe) provides long-lasting therapeutic effects in dopamine-depleted (DD) mice. We used synaptic differences to excite parvalbumin-expressing GPe neurons and inhibit lim-homeobox-6­expressing GPe neurons simultaneously using brief bursts of electrical stimulation. In DD mice, circuit-inspired DBS provided long-lasting therapeutic benefits that far exceeded those induced by conventional DBS, extending several hours after stimulation. These results establish the feasibility of transforming knowledge of circuit architecture into translatable therapeutic approaches.


Assuntos
Estimulação Encefálica Profunda/métodos , Dopamina/deficiência , Globo Pálido/fisiopatologia , Neurônios/fisiologia , Doença de Parkinson/terapia , Estimulação Elétrica Nervosa Transcutânea/métodos , Animais , Modelos Animais de Doenças , Dopamina/genética , Feminino , Globo Pálido/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Optogenética , Doença de Parkinson/fisiopatologia , Núcleo Subtalâmico/citologia , Núcleo Subtalâmico/fisiopatologia , Sinapses/fisiologia
10.
Neuroscience ; 466: 260-272, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34088581

RESUMO

Robust locomotion is critical to many species' survival, yet the mechanisms by which efficient locomotion is learned and maintained are poorly understood. In mice, a common paradigm for assaying locomotor learning is the rotarod task, in which mice learn to maintain balance atop of an accelerating rod. However, the standard metric for learning in this task is improvements in latency to fall, which gives little insight into the rich kinematic adjustments that accompany locomotor learning. In this study, we developed a rotarod-like task called the RotaWheel in which changes in paw kinematics are tracked using high-speed cameras as mice learn to stay atop an accelerating wheel. Using this device, we found that learning was accompanied by stereotyped progressions of paw kinematics that correlated with early, intermediate, and late stages of performance. Within the first day, mice sharpened their interlimb coordination using a timed pause in the forward swing of their forepaws. Over the next several days, mice reduced their stride length and took shorter, quicker steps. By the second week of training, mice began to use a more variable locomotor strategy, where consecutive overshoots or undershoots in strides were selected across paws to drive forward and backward exploration of the wheel. Collectively, our results suggest that mouse locomotor learning occurs through multiple mechanisms evolving over separate time courses and involving distinct corrective actions. These data provide insights into the kinematic strategies that accompany locomotor learning and establish an experimental platform for studying locomotor skill learning in mice.


Assuntos
Aprendizagem , Locomoção , Animais , Fenômenos Biomecânicos , Camundongos
11.
J Neurosci ; 40(50): 9772-9783, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33188066

RESUMO

Neuron subtype dysfunction is a key contributor to neurologic disease circuits, but identifying associated gene regulatory pathways is complicated by the molecular complexity of the brain. For example, parvalbumin-expressing (PV+) neurons in the external globus pallidus (GPe) are critically involved in the motor deficits of dopamine-depleted mouse models of Parkinson's disease, where cell type-specific optogenetic stimulation of PV+ neurons over other neuron populations rescues locomotion. Despite the distinct roles these cell types play in the neural circuit, the molecular correlates remain unknown because of the difficulty of isolating rare neuron subtypes. To address this issue, we developed a new viral affinity purification strategy, Cre-Specific Nuclear Anchored Independent Labeling, to isolate Cre recombinase-expressing (Cre+) nuclei from the adult mouse brain. Applying this technology, we performed targeted assessments of the cell type-specific transcriptomic and epigenetic effects of dopamine depletion on PV+ and PV- cells within three brain regions of male and female mice: GPe, striatum, and cortex. We found GPe PV+ neuron-specific gene expression changes that suggested increased hypoxia-inducible factor 2α signaling. Consistent with transcriptomic data, regions of open chromatin affected by dopamine depletion within GPe PV+ neurons were enriched for hypoxia-inducible factor family binding motifs. The gene expression and epigenomic experiments performed on PV+ neurons isolated by Cre-Specific Nuclear Anchored Independent Labeling identified a transcriptional regulatory network mediated by the neuroprotective factor Hif2a as underlying neural circuit differences in response to dopamine depletion.SIGNIFICANCE STATEMENT Cre-Specific Nuclear Anchored Independent Labeling is an enhanced, virus-based approach to isolate nuclei of a specific cell type for transcriptome and epigenome interrogation that decreases dependency on transgenic animals. Applying this technology to GPe parvalbumin-expressing neurons in a mouse model of Parkinson's disease, we discovered evidence for an upregulation of the oxygen homeostasis maintaining pathway involving Hypoxia-inducible factor 2α. These results provide new insight into how neuron subtypes outside the substantia nigra pars compacta may be compensating at a molecular level for differences in the motor production neural circuit during the progression of Parkinson's disease. Furthermore, they emphasize the utility of cell type-specific technologies, such as Cre-Specific Nuclear Anchored Independent Labeling, for isolated assessment of specific neuron subtypes in complex systems.


Assuntos
Globo Pálido/metabolismo , Neurônios/metabolismo , Estresse Oxidativo/fisiologia , Doença de Parkinson Secundária/metabolismo , Animais , Córtex Cerebral/metabolismo , Corpo Estriado/metabolismo , Camundongos , Camundongos Transgênicos , Oxidopamina , Doença de Parkinson Secundária/induzido quimicamente
12.
Elife ; 92020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32894224

RESUMO

As a rodent basal ganglia (BG) output nucleus, the substantia nigra pars reticulata (SNr) is well positioned to impact behavior. SNr neurons receive GABAergic inputs from the striatum (direct pathway) and globus pallidus (GPe, indirect pathway). Dominant theories of action selection rely on these pathways' inhibitory actions. Yet, experimental results on SNr responses to these inputs are limited and include excitatory effects. Our study combines experimental and computational work to characterize, explain, and make predictions about these pathways. We observe diverse SNr responses to stimulation of SNr-projecting striatal and GPe neurons, including biphasic and excitatory effects, which our modeling shows can be explained by intracellular chloride processing. Our work predicts that ongoing GPe activity could tune the SNr operating mode, including its responses in decision-making scenarios, and GPe output may modulate synchrony and low-frequency oscillations of SNr neurons, which we confirm using optogenetic stimulation of GPe terminals within the SNr.


Assuntos
Cloretos/metabolismo , Vias Neurais/fisiologia , Substância Negra/fisiologia , Transmissão Sináptica/fisiologia , Ácido gama-Aminobutírico/metabolismo , Animais , Simulação por Computador , Corpo Estriado/fisiologia , Globo Pálido/fisiologia , Camundongos , Neurônios/metabolismo , Optogenética/métodos , Parte Reticular da Substância Negra/fisiologia
13.
J Neurophysiol ; 124(2): 312-329, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32579421

RESUMO

Delta oscillations (0.5-4 Hz) are a robust feature of basal ganglia pathophysiology in patients with Parkinson's disease (PD) in relationship to tremor, but their relationship to other parkinsonian symptoms has not been investigated. While delta oscillations have been observed in mouse models of PD, they have only been investigated in anesthetized animals, suggesting that the oscillations may be an anesthesia artifact and limiting the ability to relate them to motor symptoms. Here, we establish a novel approach to detect spike oscillations embedded in noise to provide the first study of delta oscillations in awake, dopamine-depleted mice. We find that approximately half of neurons in the substantia nigra pars reticulata (SNr) exhibit delta oscillations in dopamine depletion and that these oscillations are a strong indicator of dopamine loss and akinesia, outperforming measures such as changes in firing rate, irregularity, bursting, and synchrony. These oscillations are typically weakened, but not ablated, during movement. We further establish that these oscillations are caused by the loss of D2-receptor activation and do not originate from motor cortex, contrary to previous findings in anesthetized animals. Instead, SNr oscillations precede those in M1 at a 100- to 300-ms lag, and these neurons' relationship to M1 oscillations can be used as the basis for a novel classification of SNr into two subpopulations. These results give insight into how dopamine loss leads to motor dysfunction and suggest a reappraisal of delta oscillations as a marker of akinetic symptoms in PD.NEW & NOTEWORTHY This work introduces a novel method to detect spike oscillations amidst neural noise. Using this method, we demonstrate that delta oscillations in the basal ganglia are a defining feature of awake, dopamine-depleted mice and are strongly correlated with dopamine loss and parkinsonian motor symptoms. These oscillations arise from a loss of D2-receptor activation and do not require motor cortex. Similar oscillations in human patients may be an underappreciated marker and target for Parkinson's disease (PD) treatment.


Assuntos
Potenciais de Ação/fisiologia , Gânglios da Base/fisiopatologia , Ritmo Delta/fisiologia , Dopamina/metabolismo , Doença de Parkinson/fisiopatologia , Parte Reticular da Substância Negra/fisiopatologia , Receptores de Dopamina D2/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Gânglios da Base/efeitos dos fármacos , Gânglios da Base/metabolismo , Biomarcadores , Ritmo Delta/efeitos dos fármacos , Modelos Animais de Doenças , Agonistas de Dopamina/farmacologia , Antagonistas de Dopamina/farmacologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Doença de Parkinson/metabolismo , Parte Reticular da Substância Negra/efeitos dos fármacos , Parte Reticular da Substância Negra/metabolismo , Receptores de Dopamina D2/efeitos dos fármacos , Vigília/fisiologia
14.
J Neurosci ; 40(3): 496-508, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31719168

RESUMO

Computations that require speed and temporal precision are implemented throughout the nervous system by neurons capable of firing at very high rates, rapidly encoding and transmitting a rich amount of information, but with substantial metabolic and physical costs. For economical fast spiking and high throughput information processing, neurons need to optimize multiple biophysical properties in parallel, but the mechanisms of this coordination remain unknown. We hypothesized that coordinated gene expression may underlie the coordinated tuning of the biophysical properties required for rapid firing and signal transmission. Taking advantage of the diversity of fast-spiking cell types in the medial vestibular nucleus of mice of both sexes, we examined the relationship between gene expression, ionic currents, and neuronal firing capacity. Across excitatory and inhibitory cell types, genes encoding voltage-gated ion channels responsible for depolarizing and repolarizing the action potential were tightly coexpressed, and their absolute expression levels increased with maximal firing rate. Remarkably, this coordinated gene expression extended to neurofilaments and specific presynaptic molecules, providing a mechanism for coregulating axon caliber and transmitter release to match firing capacity. These findings suggest the presence of a module of genes, which is coexpressed in a graded manner and jointly tunes multiple biophysical properties for economical differentiation of firing capacity. The graded tuning of fast-spiking capacity by the absolute expression levels of specific ion channels provides a counterexample to the widely held assumption that cell-type-specific firing patterns can be achieved via a vast combination of different ion channels.SIGNIFICANCE STATEMENT Although essential roles of fast-spiking neurons in various neural circuits have been widely recognized, it remains unclear how neurons efficiently coordinate the multiple biophysical properties required to maintain high rates of action potential firing and transmitter release. Taking advantage of diverse fast-firing capacities among medial vestibular nucleus neurons of mice, we identify a group of ion channel, synaptic, and structural genes that exhibit mutually correlated expression levels, which covary with firing capacity. Coexpression of this fast-spiking gene module may be a basic strategy for neurons to efficiently and coordinately tune the speed of action potential generation and propagation and transmitter release at presynaptic terminals.


Assuntos
Canais Iônicos/biossíntese , Proteínas de Neurofilamentos/biossíntese , Neurônios/metabolismo , Sinapses/genética , Núcleos Vestibulares/metabolismo , Potenciais de Ação , Animais , Axônios/metabolismo , Axônios/fisiologia , Fenômenos Eletrofisiológicos/genética , Feminino , Regulação da Expressão Gênica/genética , Estudo de Associação Genômica Ampla , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Patch-Clamp , Transmissão Sináptica/genética , Transmissão Sináptica/fisiologia , Núcleos Vestibulares/citologia
16.
Front Neurosci ; 13: 936, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31572109

RESUMO

The annual deep brain stimulation (DBS) Think Tank aims to create an opportunity for a multidisciplinary discussion in the field of neuromodulation to examine developments, opportunities and challenges in the field. The proceedings of the Sixth Annual Think Tank recapitulate progress in applications of neurotechnology, neurophysiology, and emerging techniques for the treatment of a range of psychiatric and neurological conditions including Parkinson's disease, essential tremor, Tourette syndrome, epilepsy, cognitive disorders, and addiction. Each section of this overview provides insight about the understanding of neuromodulation for specific disease and discusses current challenges and future directions. This year's report addresses key issues in implementing advanced neurophysiological techniques, evolving use of novel modulation techniques to deliver DBS, ans improved neuroimaging techniques. The proceedings also offer insights into the new era of brain network neuromodulation and connectomic DBS to define and target dysfunctional brain networks. The proceedings also focused on innovations in applications and understanding of adaptive DBS (closed-loop systems), the use and applications of optogenetics in the field of neurostimulation and the need to develop databases for DBS indications. Finally, updates on neuroethical, legal, social, and policy issues relevant to DBS research are discussed.

17.
Elife ; 82019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30839276

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative disorder whose cardinal motor symptoms are attributed to dysfunction of basal ganglia circuits under conditions of low dopamine. Despite well-established physiological criteria to define basal ganglia dysfunction, correlations between individual parameters and motor symptoms are often weak, challenging their predictive validity and causal contributions to behavior. One limitation is that basal ganglia pathophysiology is studied only at end-stages of depletion, leaving an impoverished understanding of when deficits emerge and how they evolve over the course of depletion. In this study, we use toxin- and neurodegeneration-induced mouse models of dopamine depletion to establish the physiological trajectory by which the substantia nigra reticulata (SNr) transitions from the healthy to the diseased state. We find that physiological progression in the SNr proceeds in discrete state transitions that are highly stereotyped across models and correlate well with the prodromal and symptomatic stages of behavior.


Assuntos
Dopamina/deficiência , Dopamina/metabolismo , Transtornos Motores/fisiopatologia , Doenças Neurodegenerativas/fisiopatologia , Parte Reticular da Substância Negra/fisiopatologia , Animais , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
18.
J Neurosci ; 39(15): 2965-2975, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30737313

RESUMO

Hyperactivity in striatum is associated with compulsive behaviors in obsessive-compulsive disorder (OCD) and related illnesses, but it is unclear whether this hyperactivity is due to intrinsic striatal dysfunction or abnormalities in corticostriatal inputs. Understanding the cellular and circuit properties underlying striatal hyperactivity could help inform the optimization of targeted stimulation treatments for compulsive behavior disorders. To investigate the cellular and synaptic abnormalities that may underlie corticostriatal dysfunction relevant to OCD, we used the Sapap3 knock-out (Sapap3-KO) mouse model of compulsive behaviors, which also exhibits hyperactivity in central striatum. Ex vivo electrophysiology in double-transgenic mice was used to assess intrinsic excitability and functional synaptic input in spiny projection neurons (SPNs) and fast-spiking interneurons (FSIs) in central striatum of Sapap3-KOs and wild-type (WT) littermates. While we found no differences in intrinsic excitability of SPNs or FSIs between Sapap3-KOs and WTs, excitatory drive to FSIs was significantly increased in KOs. Contrary to predictions, lateral orbitofrontal cortex-striatal synapses were not responsible for this increased drive; optogenetic stimulation revealed that lateral orbitofrontal cortex input to SPNs was reduced in KOs (∼3-fold) and unchanged in FSIs. However, secondary motor area (M2) postsynaptic responses in central striatum were significantly increased (∼6-fold) in strength and reliability in KOs relative to WTs. These results suggest that increased M2-striatal drive may contribute to both in vivo striatal hyperactivity and compulsive behaviors, and support a potential role for presupplementary/supplementary motor cortical regions in the pathology and treatment of compulsive behavior disorders.SIGNIFICANCE STATEMENT These findings highlight an unexpected contribution of M2 projections to striatal dysfunction in the Sapap3-KO obsessive-compulsive disorder (OCD)-relevant mouse model, with M2 inputs strengthened by at least sixfold onto both spiny projection neurons and fast-spiking interneurons in central striatum. Because M2 is thought to be homologous to presupplementary/supplementary motor areas (pre-SMA/SMA) in humans, regions important for movement preparation and behavioral sequencing, these data are consistent with a model in which increased drive from M2 leads to excessive selection of sequenced motor patterns. Together with observations of hyperactivity in pre-SMA/SMA in both OCD and Tourette syndrome, and evidence that pre-SMA is a potential target for repetitive transcranial magnetic stimulation treatment in OCD, these results support further dissection of the role of M2 in compulsivity.


Assuntos
Comportamento Compulsivo/fisiopatologia , Comportamento Compulsivo/psicologia , Córtex Motor/fisiopatologia , Neostriado/fisiopatologia , Animais , Potenciais Pós-Sinápticos Excitadores , Feminino , Interneurônios/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Córtex Motor/citologia , Neostriado/citologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Vias Neurais/fisiologia , Neurônios , Optogenética , Sinapses
19.
J Clin Invest ; 128(12): 5201-5202, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30371507

RESUMO

Parkinson's disease (PD) patients have increased histamine in their basal ganglia, but the role of this neurotransmitter in PD is poorly understood. In this issue of the JCI, Zhuang et al. demonstrate that histamine levels rise in the subthalamic nucleus (STN) to compensate for abnormal firing patterns. Injection of histamine into the STN restores normal firing patterns and motor activity, whereas merely changing firing rates has no behavioral effect. Moreover, STN deep brain stimulation, a widespread therapy for PD, regularizes firing through endogenous histamine release. This suggests that abnormal firing patterns, rather than rates, cause PD symptoms, and this histaminergic pathway may lead to new treatments for the disease.


Assuntos
Estimulação Encefálica Profunda , Núcleo Subtalâmico , Animais , Encéfalo , Histamina , Humanos , Neurônios , Ratos
20.
Curr Opin Biomed Eng ; 8: 14-19, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-31903441

RESUMO

Movement disorders including Parkinson's disease and dystonia are caused by neurological dysfunction, typically resulting from the loss of a neuronal input within a circuit. Neuromodulation, specifically deep brain stimulation (DBS), has proven to be a critical development in the treatment of movement disorders. Continuing efforts aim to improve DBS techniques, both in how they exert their effects and in the efficacy of the mechanism involved in eliciting those effects. While optogenetic stimulation is currently infeasible in human patients, opto-DBS research provides an indispensible avenue to understand the mechanisms of DBS therapeutic and adverse effects. We review the benefits of cell-type specific manipulations in understanding the root cause of movement disorders and how DBS might optimally combat those causes. We also explore new circuit-inspired applications of DBS suggested by thorough, high-throughput optogenetic techniques. Maximizing the efficacy and outcome of DBS requires a multi-tiered approach; research employing optogenetics provides the specificity and feasibility to uncover the mechanisms that will help realize these gains in patient care.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...