Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Radiol Med ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743319

RESUMO

Dual-energy CT stands out as a robust and innovative imaging modality, which has shown impressive advancements and increasing applications in musculoskeletal imaging. It allows to obtain detailed images with novel insights that were once the exclusive prerogative of magnetic resonance imaging. Attenuation data obtained by using different energy spectra enable to provide unique information about tissue characterization in addition to the well-established strengths of CT in the evaluation of bony structures. To understand clearly the potential of this imaging modality, radiologists must be aware of the technical complexity of this imaging tool, the different ways to acquire images and the several algorithms that can be applied in daily clinical practice and for research. Concerning musculoskeletal imaging, dual-energy CT has gained more and more space for evaluating crystal arthropathy, bone marrow edema, and soft tissue structures, including tendons and ligaments. This article aims to analyze and discuss the role of dual-energy CT in musculoskeletal imaging, exploring technical aspects, applications and clinical implications and possible perspectives of this technique.

2.
Eur Radiol Exp ; 8(1): 62, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38693468

RESUMO

Artificial intelligence (AI) has demonstrated great potential in a wide variety of applications in interventional radiology (IR). Support for decision-making and outcome prediction, new functions and improvements in fluoroscopy, ultrasound, computed tomography, and magnetic resonance imaging, specifically in the field of IR, have all been investigated. Furthermore, AI represents a significant boost for fusion imaging and simulated reality, robotics, touchless software interactions, and virtual biopsy. The procedural nature, heterogeneity, and lack of standardisation slow down the process of adoption of AI in IR. Research in AI is in its early stages as current literature is based on pilot or proof of concept studies. The full range of possibilities is yet to be explored.Relevance statement Exploring AI's transformative potential, this article assesses its current applications and challenges in IR, offering insights into decision support and outcome prediction, imaging enhancements, robotics, and touchless interactions, shaping the future of patient care.Key points• AI adoption in IR is more complex compared to diagnostic radiology.• Current literature about AI in IR is in its early stages.• AI has the potential to revolutionise every aspect of IR.


Assuntos
Inteligência Artificial , Radiologia Intervencionista , Humanos , Radiologia Intervencionista/métodos
3.
Tomography ; 10(3): 415-427, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38535774

RESUMO

Computed tomography (CT) arthrography is a quickly available imaging modality to investigate elbow disorders. Its excellent spatial resolution enables the detection of subtle pathologic changes of intra-articular structures, which makes this technique extremely valuable in a joint with very tiny chondral layers and complex anatomy of articular capsule and ligaments. Radiation exposure has been widely decreased with the novel CT scanners, thereby increasing the indications of this examination. The main applications of CT arthrography of the elbow are the evaluation of capsule, ligaments, and osteochondral lesions in both the settings of acute trauma, degenerative changes, and chronic injury due to repeated microtrauma and overuse. In this review, we discuss the normal anatomic findings, technical tips for injection and image acquisition, and pathologic findings that can be encountered in CT arthrography of the elbow, shedding light on its role in the diagnosis and management of different orthopedic conditions. We aspire to offer a roadmap for the integration of elbow CT arthrography into routine clinical practice, fostering improved patient outcomes and a deeper understanding of elbow pathologies.


Assuntos
Artrografia , Cotovelo , Humanos , Tomografia Computadorizada por Raios X , Tomógrafos Computadorizados , Radiologistas
4.
Insights Imaging ; 15(1): 92, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38530547

RESUMO

OBJECTIVES: To collect real-world data about the knowledge and self-perception of young radiologists concerning the use of contrast media (CM) and the management of adverse drug reactions (ADR). METHODS: A survey (29 questions) was distributed to residents and board-certified radiologists younger than 40 years to investigate the current international situation in young radiology community regarding CM and ADRs. Descriptive statistics analysis was performed. RESULTS: Out of 454 respondents from 48 countries (mean age: 31.7 ± 4 years, range 25-39), 271 (59.7%) were radiology residents and 183 (40.3%) were board-certified radiologists. The majority (349, 76.5%) felt they were adequately informed regarding the use of CM. However, only 141 (31.1%) received specific training on the use of CM and 82 (18.1%) about management ADR during their residency. Although 266 (58.6%) knew safety protocols for handling ADR, 69.6% (316) lacked confidence in their ability to manage CM-induced ADRs and 95.8% (435) expressed a desire to enhance their understanding of CM use and handling of CM-induced ADRs. Nearly 300 respondents (297; 65.4%) were aware of the benefits of contrast-enhanced ultrasound, but 249 (54.8%) of participants did not perform it. The preferred CM injection strategy in CT parenchymal examination and CT angiography examination was based on patient's lean body weight in 318 (70.0%) and 160 (35.2%), a predeterminate fixed amount in 79 (17.4%) and 116 (25.6%), iodine delivery rate in 26 (5.7%) and 122 (26.9%), and scan time in 31 (6.8%) and 56 (12.3%), respectively. CONCLUSION: Training in CM use and management ADR should be implemented in the training of radiology residents. CRITICAL RELEVANCE STATEMENT: We highlight the need for improvement in the education of young radiologists regarding contrast media; more attention from residency programs and scientific societies should be focused on training about contrast media use and the management of adverse drug reactions. KEY POINTS: • This survey investigated training of young radiologists about use of contrast media and management adverse reactions. • Most young radiologists claimed they did not receive dedicated training. • An extreme heterogeneity of responses was observed about contrast media indications/contraindications and injection strategy.

5.
EBioMedicine ; 101: 105018, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38377797

RESUMO

BACKGROUND: Atypical cartilaginous tumour (ACT) and high-grade chondrosarcoma (CS) of long bones are respectively managed with active surveillance or curettage and wide resection. Our aim was to determine diagnostic performance of X-rays radiomics-based machine learning for classification of ACT and high-grade CS of long bones. METHODS: This retrospective, IRB-approved study included 150 patients with surgically treated and histology-proven lesions at two tertiary bone sarcoma centres. At centre 1, the dataset was split into training (n = 71 ACT, n = 24 high-grade CS) and internal test (n = 19 ACT, n = 6 high-grade CS) cohorts, respectively, based on the date of surgery. At centre 2, the dataset constituted the external test cohort (n = 12 ACT, n = 18 high-grade CS). Manual segmentation was performed on frontal view X-rays, using MRI or CT for preliminary identification of lesion margins. After image pre-processing, radiomic features were extracted. Dimensionality reduction included stability, coefficient of variation, and mutual information analyses. In the training cohort, after class balancing, a machine learning classifier (Support Vector Machine) was automatically tuned using nested 10-fold cross-validation. Then, it was tested on both the test cohorts and compared to two musculoskeletal radiologists' performance using McNemar's test. FINDINGS: Five radiomic features (3 morphology, 2 texture) passed dimensionality reduction. After tuning on the training cohort (AUC = 0.75), the classifier had 80%, 83%, 79% and 80%, 89%, 67% accuracy, sensitivity, and specificity in the internal (temporally independent) and external (geographically independent) test cohorts, respectively, with no difference compared to the radiologists (p ≥ 0.617). INTERPRETATION: X-rays radiomics-based machine learning accurately differentiates between ACT and high-grade CS of long bones. FUNDING: AIRC Investigator Grant.


Assuntos
Neoplasias Ósseas , Condrossarcoma , Humanos , Estudos Retrospectivos , Raios X , Radiômica , Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/patologia , Condrossarcoma/diagnóstico por imagem , Condrossarcoma/patologia , Imageamento por Ressonância Magnética/métodos , Aprendizado de Máquina
6.
Insights Imaging ; 15(1): 54, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38411750

RESUMO

OBJECTIVE: To systematically review radiomic feature reproducibility and model validation strategies in recent studies dealing with CT and MRI radiomics of bone and soft-tissue sarcomas, thus updating a previous version of this review which included studies published up to 2020. METHODS: A literature search was conducted on EMBASE and PubMed databases for papers published between January 2021 and March 2023. Data regarding radiomic feature reproducibility and model validation strategies were extracted and analyzed. RESULTS: Out of 201 identified papers, 55 were included. They dealt with radiomics of bone (n = 23) or soft-tissue (n = 32) tumors. Thirty-two (out of 54 employing manual or semiautomatic segmentation, 59%) studies included a feature reproducibility analysis. Reproducibility was assessed based on intra/interobserver segmentation variability in 30 (55%) and geometrical transformations of the region of interest in 2 (4%) studies. At least one machine learning validation technique was used for model development in 34 (62%) papers, and K-fold cross-validation was employed most frequently. A clinical validation of the model was reported in 38 (69%) papers. It was performed using a separate dataset from the primary institution (internal test) in 22 (40%), an independent dataset from another institution (external test) in 14 (25%) and both in 2 (4%) studies. CONCLUSIONS: Compared to papers published up to 2020, a clear improvement was noted with almost double publications reporting methodological aspects related to reproducibility and validation. Larger multicenter investigations including external clinical validation and the publication of databases in open-access repositories could further improve methodology and bring radiomics from a research area to the clinical stage. CRITICAL RELEVANCE STATEMENT: An improvement in feature reproducibility and model validation strategies has been shown in this updated systematic review on radiomics of bone and soft-tissue sarcomas, highlighting efforts to enhance methodology and bring radiomics from a research area to the clinical stage. KEY POINTS: • 2021-2023 radiomic studies on CT and MRI of musculoskeletal sarcomas were reviewed. • Feature reproducibility was assessed in more than half (59%) of the studies. • Model clinical validation was performed in 69% of the studies. • Internal (44%) and/or external (29%) test datasets were employed for clinical validation.

7.
BMC Oral Health ; 24(1): 274, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402191

RESUMO

BACKGROUND: The aim of this systematic review is to evaluate the diagnostic performance of Artificial Intelligence (AI) models designed for the detection of caries lesion (CL). MATERIALS AND METHODS: An electronic literature search was conducted on PubMed, Web of Science, SCOPUS, LILACS and Embase databases for retrospective, prospective and cross-sectional studies published until January 2023, using the following keywords: artificial intelligence (AI), machine learning (ML), deep learning (DL), artificial neural networks (ANN), convolutional neural networks (CNN), deep convolutional neural networks (DCNN), radiology, detection, diagnosis and dental caries (DC). The quality assessment was performed using the guidelines of QUADAS-2. RESULTS: Twenty articles that met the selection criteria were evaluated. Five studies were performed on periapical radiographs, nine on bitewings, and six on orthopantomography. The number of imaging examinations included ranged from 15 to 2900. Four studies investigated ANN models, fifteen CNN models, and two DCNN models. Twelve were retrospective studies, six cross-sectional and two prospective. The following diagnostic performance was achieved in detecting CL: sensitivity from 0.44 to 0.86, specificity from 0.85 to 0.98, precision from 0.50 to 0.94, PPV (Positive Predictive Value) 0.86, NPV (Negative Predictive Value) 0.95, accuracy from 0.73 to 0.98, area under the curve (AUC) from 0.84 to 0.98, intersection over union of 0.3-0.4 and 0.78, Dice coefficient 0.66 and 0.88, F1-score from 0.64 to 0.92. According to the QUADAS-2 evaluation, most studies exhibited a low risk of bias. CONCLUSION: AI-based models have demonstrated good diagnostic performance, potentially being an important aid in CL detection. Some limitations of these studies are related to the size and heterogeneity of the datasets. Future studies need to rely on comparable, large, and clinically meaningful datasets. PROTOCOL: PROSPERO identifier: CRD42023470708.


Assuntos
Inteligência Artificial , Cárie Dentária , Humanos , Estudos Transversais , Cárie Dentária/diagnóstico por imagem , Suscetibilidade à Cárie Dentária , Estudos Prospectivos , Estudos Retrospectivos
8.
Eur Radiol Exp ; 8(1): 22, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38355767

RESUMO

This narrative review focuses on clinical applications of artificial intelligence (AI) in musculoskeletal imaging. A range of musculoskeletal disorders are discussed using a clinical-based approach, including trauma, bone age estimation, osteoarthritis, bone and soft-tissue tumors, and orthopedic implant-related pathology. Several AI algorithms have been applied to fracture detection and classification, which are potentially helpful tools for radiologists and clinicians. In bone age assessment, AI methods have been applied to assist radiologists by automatizing workflow, thus reducing workload and inter-observer variability. AI may potentially aid radiologists in identifying and grading abnormal findings of osteoarthritis as well as predicting the onset or progression of this disease. Either alone or combined with radiomics, AI algorithms may potentially improve diagnosis and outcome prediction of bone and soft-tissue tumors. Finally, information regarding appropriate positioning of orthopedic implants and related complications may be obtained using AI algorithms. In conclusion, rather than replacing radiologists, the use of AI should instead help them to optimize workflow, augment diagnostic performance, and keep up with ever-increasing workload.Relevance statement This narrative review provides an overview of AI applications in musculoskeletal imaging. As the number of AI technologies continues to increase, it will be crucial for radiologists to play a role in their selection and application as well as to fully understand their potential value in clinical practice. Key points • AI may potentially assist musculoskeletal radiologists in several interpretative tasks.• AI applications to trauma, age estimation, osteoarthritis, tumors, and orthopedic implants are discussed.• AI should help radiologists to optimize workflow and augment diagnostic performance.


Assuntos
Neoplasias , Osteoartrite , Humanos , Inteligência Artificial , Algoritmos , Prognóstico
9.
J Imaging Inform Med ; 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38332405

RESUMO

Segmentation and image intensity discretization impact on radiomics workflow. The aim of this study is to investigate the influence of interobserver segmentation variability and intensity discretization methods on the reproducibility of MRI-based radiomic features in lipoma and atypical lipomatous tumor (ALT). Thirty patients with lipoma or ALT were retrospectively included. Three readers independently performed manual contour-focused segmentation on T1-weighted and T2-weighted sequences, including the whole tumor volume. Additionally, a marginal erosion was applied to segmentations to evaluate its influence on feature reproducibility. After image pre-processing, with included intensity discretization employing both fixed bin number and width approaches, 1106 radiomic features were extracted from each sequence. Intraclass correlation coefficient (ICC) 95% confidence interval lower bound ≥ 0.75 defined feature stability. In contour-focused vs. margin shrinkage segmentation, the rates of stable features extracted from T1-weighted and T2-weighted images ranged from 92.68 to 95.21% vs. 90.69 to 95.66% after fixed bin number discretization and from 95.75 to 97.65% vs. 95.39 to 96.47% after fixed bin width discretization, respectively, with no difference between the two segmentation approaches (p ≥ 0.175). Higher stable feature rates and higher feature ICC values were found when implementing discretization with fixed bin width compared to fixed bin number, regardless of the segmentation approach (p < 0.001). In conclusion, MRI radiomic features of lipoma and ALT are reproducible regardless of the segmentation approach and intensity discretization method, although a certain degree of interobserver variability highlights the need for a preliminary reliability analysis in future studies.

10.
Br J Radiol ; 97(1153): 267-273, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38263822

RESUMO

OBJECTIVES: To investigate the efficacy and safety of ultrasound-guided percutaneous irrigation of calcific tendinopathy (US-PICT) applied out of the shoulder, comparing its effectiveness to US-PICT of the rotator cuff. METHODS: Patients subjected to US-PICT for extra-shoulder calcific tendinitis (Case Group) were compared to those subjected to US-PICT of the rotator cuff (Control Group). We had pre-procedure Visual Analogue Scale (VAS) pain score, 1- and 3-month VAS of patients of the Case Group, pre-procedure and 3-month VAS of patients of the Control Group. RESULTS: The Case Group consisted of 41 patients (27 women; mean age: 45 ± 9years): 26 gluteus medius, 5 patellar tendon, 3 rectus femoris, 2 gluteus maximus, 2 common extensor tendon, 1 extensor carpi radialis longus, 1 pes anserinus, and 1 peroneus longus. The Control Group included 41 patients (27 women; mean age: 47 ± 11 years). The mean pre-procedure VAS of the Case Group was 8.8 ± 0.7 with a significant (P < .001) drop at 1 month (4.5 ± 0.6) and 3 months (3.6 ± 0.6). The mean pre-procedure VAS of the Control Group was 8 ± 1.4 and dropped to 3.1 ± 1.6 after 3 months (P < .001). Post-treatment VAS at 3 months was not significantly different between two Groups (P = 0.134). Similarly, the decrease of VAS from baseline to 3 months was not significantly different between the two Groups (P = 0.264). CONCLUSIONS: US-PICT is a safe and effective procedure that can be used out of the shoulder. ADVANCES IN KNOWLEDGE: This study demonstrated the safety and effectiveness of US-PICT as a valuable therapeutic option for extra-shoulder calcific tendinitis, with similar clinical outcome to the same procedure performed in the rotator cuff. The technique must be adapted in some deeply located calcifications by means of the use of different needles and by thoroughly planning the access point for the procedure.


Assuntos
Doenças Musculoesqueléticas , Ombro , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Manguito Rotador , Agulhas , Antebraço , Perna (Membro)
11.
Ultraschall Med ; 45(1): 54-60, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37001562

RESUMO

PURPOSE: To investigate the role of ultrasound (US) in the evaluation of intrinsic and extrinsic ligaments of the wrist with magnetic resonance arthrography (MRA) as the reference standard. MATERIALS AND METHODS: This prospective study included patients referred for MRA after wrist trauma. US examination was performed just before MRA. On the dorsal and palmar sides of the wrist, the intrinsic interosseus and midcarpal, extrinsic, and collateral ligaments were evaluated. MRA was performed on a 1.5-T unit. In the first 20 patients included, ligament thickness was independently assessed using US and MRA and thickness reproducibility was calculated. Ligament integrity was evaluated in all patients. RESULTS: 38 patients (22 men, 16 women; mean age: 38 years) were included. Ligament thickness reproducibility ranged between 44% for the palmar ulnocapitate ligament and 71% for the palmar scaphotriquetral ligament. US had a sensitivity, specificity, positive and negative predictive values, and accuracy of 100% in the identification of tears of the palmar (n=8) and dorsal (n=3) bands of the scapholunate ligament and the ulnar collateral ligament (n=3). It had a sensitivity of 100%, specificity of 97%, positive predictive value of 50%, negative predictive value of 100%, and accuracy of 97% in the identification of tears of the palmar ulnolunate ligament (n=1). CONCLUSION: Compared to MRA, US showed good reproducibility in the assessment of wrist ligament thickness and similar accuracy with respect to identifying tears of the scapholunate, palmar ulnolunate, and ulnar collateral ligaments.


Assuntos
Ligamentos , Punho , Masculino , Humanos , Feminino , Adulto , Reprodutibilidade dos Testes , Estudos Prospectivos , Sensibilidade e Especificidade , Ligamentos/diagnóstico por imagem , Ligamentos/lesões , Ligamentos/patologia , Imageamento por Ressonância Magnética/métodos , Articulação do Punho/diagnóstico por imagem
12.
Eur Spine J ; 33(1): 31-38, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37950828

RESUMO

PURPOSE: Scoliosis is a cause of loading imbalance between the lower limbs, which can result in BMD differences between the two femurs. We investigated the discrepancy in BMD values assessed by quantitative computed tomography (QCT) between femurs in patients with and without scoliosis, also assessing if this difference can be related to spine convexity. METHODS: Abdominal CT examinations were retrospectively reviewed. An ''asynchronous'' calibration of CT images was performed to obtain BMD values from QCT. Scoliosis was evaluated on the antero-posterior CT localizer to calculate the Cobb angle. Differences between aBMD and vBMD of femurs were assessed in both scoliotic and non-scoliotic subjects. RESULTS: Final study cohort consisted of 263 subjects, 225 of them without scoliosis (85.6%) and 38 with scoliosis (14.4%). No significant differences were found in the general population without scoliosis, except for vBMD at the neck. Comparison of femurs in scoliotic patients showed statistically significant differences at neck aBMD -0.028 g/cm2, p = 0.004), total femur aBMD (--0.032 g/cm2, p = 0.008) and total femur vBMD (--8.9 mg/cm3, p = 0.011), with lower BMD values on the convexity side. In 10 cases (26%) a change in the final T-score diagnosis was observed. CONCLUSION: QCT analysis demonstrated a difference in both areal and volumetric BMD between the two femurs of scoliotic patients, in relation to the side of the scoliotic curve. If these data will be confirmed by larger studies, bilateral femoral DXA acquisition may be proposed for these patients.


Assuntos
Osteoporose , Escoliose , Humanos , Densidade Óssea , Escoliose/diagnóstico por imagem , Escoliose/complicações , Absorciometria de Fóton/efeitos adversos , Absorciometria de Fóton/métodos , Estudos Retrospectivos , Osteoporose/etiologia , Colo do Fêmur , Fêmur/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos
13.
Radiol Med ; 129(1): 107-117, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37907673

RESUMO

PURPOSE: To compare pathologic and healthy tendons using shear-wave elastography (SWE). METHODS: A systematic review with meta-analysis was done searching Pubmed and EMBASE up to September 2022. Prospective, retrospective and cross-sectional studies that used SWE in the assessment of pathologic tendons versus control were included. Our primary outcome were SWE velocity (m/s) and stiffness (kPa). Methodological quality was assessed by the methodological index for non-randomized studies (MINORS). We used the mean difference (MD) with corresponding 95% confidence intervals (CIs) to quantify effects between groups. We performed sensitivity analysis in case of high heterogeneity, after excluding poor quality studies according to MINORS assessment. We used Grades of Recommendation, Assessment, Development and Evaluation to evaluate the certainty of evidence (CoE). RESULTS: Overall, 16 studies with 676 pathologic tendons (188 Achilles, 142 patellar, 96 supraspinatus, 250 mixed) and 723 control tendons (484 healthy; 239 contralateral tendon) were included. Five studies (31.3%) were judged as poor methodological quality. Shear-wave velocity and stiffness meta-analyses showed high heterogeneity. According to a sensitivity analysis, pathologic tendons had a lower shear wave velocity (MD of - 1.69 m/s; 95% CI 1.85; - 1.52; n = 274; I2 50%) compared to healthy tendons with very low CoE. Sensitivity analysis on stiffness still showed high heterogeneity. CONCLUSION: Pathological tendons may have reduced SWE velocity compared to controls, but the evidence is very uncertain. Future robust high-quality longitudinal studies and clear technical indications on the use of this tool are needed. PROTOCOL: PROSPERO identifier: CRD42023405410 CLINICAL RELEVANCE STATEMENT: SWE is a relatively recent modality that may increase sensitivity and diagnostic accuracy of conventional ultrasound imaging promoting early detection of tendinopathy. Non-negligible heterogeneity has been observed in included studies, so our findings may encourage the conduct of future high-quality longitudinal studies which can provide clear technical indications on the use of this promising tool in tendon imaging.


Assuntos
Técnicas de Imagem por Elasticidade , Tendinopatia , Humanos , Técnicas de Imagem por Elasticidade/métodos , Estudos Prospectivos , Estudos Retrospectivos , Estudos Transversais
14.
J Ultrasound ; 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102520

RESUMO

PURPOSE: To test the feasibility of US/CT fusion imaging to guide lumbar intradiscal O2/O3 therapy to treat discogenic degenerative low back pain due to lumbar disc herniation (LDH). METHODS: We retrospectively included consecutive patients affected by low back pain and/or sciatica due to LDH resistant to conservative therapies, who underwent to lumbar intradiscal O2/O3 injection under CT/US fusion imaging guidance (Fusion Group) and standard CT guidance (Control Group). For each procedure, we collected procedure operative time, room utilization time, number of CT passes, complications, and O2/O3 intradiscal diffusion adequacy. Technical success was defined as the ability to complete the procedure as initially planned to reach the disc. Technical efficacy was based on O2/O3 intradiscal diffusion adequacy, as demonstrated by the last CT scan. RESULTS: Six patients (4 males; mean age: 68 ± 15 years) were included in the Fusion group, six (4 males; mean age: 66 ± 12 years) in Control group. No complications were observed in both groups. In Fusion group we found significantly lower room utilization time (30 ± 6 min vs. 46 ± 10 min, p = 0.008), procedure operative time (14 ± 3 min vs. 24 ± 6 min, p = 0.008), and number of CT passes (2 [2,2] vs. 3 [3,3], p = 0.006) than in Control Group, respectively. Technical success and efficacy were 100% in both Groups. CONCLUSION: CT/US fusion imaging seems to be a feasible and safe guidance for intradiscal O2/O3 injections, allowing decrease of procedure time and number of CT passes.

15.
Eur Radiol Exp ; 7(1): 40, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37468652

RESUMO

PURPOSE: To test the technical feasibility of an augmented reality (AR) navigation system to guide bone biopsies. METHODS: We enrolled patients subjected to percutaneous computed tomography (CT)-guided bone biopsy using a novel AR navigation system. Data from prospectively enrolled patients (AR group) were compared with data obtained retrospectively from previous standard CT-guided bone biopsies (control group). We evaluated the following: procedure duration, number of CT passes, patient's radiation dose (dose-length product), complications, and specimen adequacy. Technical success was defined as the ability to complete the procedure as planned, reaching the target center. Technical efficacy was assessed evaluating specimen adequacy. RESULTS: Eight patients (4 males) aged 58 ± 24 years (mean ± standard deviation) were enrolled in the AR group and compared with 8 controls (4 males) aged 60 ± 15 years. No complications were observed. Procedure duration, number of CT passes, and radiation dose were 22 ± 5 min, 4 (median) [4, 6 interquartile range] and 1,034 ± 672 mGy*cm for the AR group and 23 ± 5 min, 9 [7.75, 11.25], and 1,954 ± 993 mGy*cm for controls, respectively. No significant differences were observed for procedure duration (p = 0.878). Conversely, number of CT passes and radiation doses were significantly lower for the AR group (p < 0.001 and p = 0.021, respectively). Technical success and technical efficacy were 100% for both groups. CONCLUSIONS: This AR navigation system is safe, feasible, and effective; it can decrease radiation exposure and number of CT passes during bone biopsies without increasing duration time. RELEVANCE STATEMENT: This augmented reality (AR) navigation system is a safe and feasible guidance for bone biopsies; it may ensure a decrease in the number of CT passes and patient's radiation dose. KEY POINTS: • This AR navigation system is a safe guidance for bone biopsies. • It ensures decrease of number of CT passes and patient's radiation exposure. • Procedure duration was similar to that of standard CT-guided biopsy. • Technical success was 100% as in all patients the target was reached. • Technical efficacy was 100% as the specimen was adequate in all patients.


Assuntos
Realidade Aumentada , Masculino , Humanos , Projetos Piloto , Estudos Retrospectivos , Doses de Radiação , Biópsia Guiada por Imagem/métodos
16.
Insights Imaging ; 14(1): 109, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37336832

RESUMO

Bizarre parosteal osteochondromatous proliferation (BPOP) is a surface-based bone lesion belonging to the group of benign chondrogenic tumors. The aim of this review is to familiarize the readers with imaging features and differential diagnosis of BPOP, also addressing pathological presentation and treatment options. The peak of incidence of BPOP is in the third and fourth decades of life, although it can occur at any age. Hands are the most common location of BPOP (55%), followed by feet (15%) and long bones (25%). On imaging, BPOP appears as a well-marginated mass of heterotopic mineralization arising from the periosteal aspect of the bone. Typical features of BPOP are contiguity with the underlying bone and lack of cortico-medullary continuity, although cortical interruption and medullary involvement have been rarely reported. Histologically, BPOP is a benign bone surface lesion characterized by osteocartilaginous proliferation with disorganized admixture of cartilage with bizarre features, bone and spindle cells. Differential diagnosis includes both benign-such as florid reactive periostitis, osteochondroma, subungual exostosis, periosteal chondroma and myositis ossificans-and malignant lesions-such as periosteal chondrosarcoma and surface-based osteosarcoma. Treatment consists of surgical resection. Local recurrences are common and treated with re-excision.Critical relevance statement Bizarre parosteal osteochondromatous proliferation is a benign mineralized mass arising from the periosteal aspect of bone cortex. Multi-modality imaging characteristics, pathology features and differential diagnosis are here highlighted to familiarize the readers with this entity and offer optimal patient care.

17.
Radiol Med ; 128(8): 989-998, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37335422

RESUMO

PURPOSE: To determine diagnostic performance of MRI radiomics-based machine learning for classification of deep-seated lipoma and atypical lipomatous tumor (ALT) of the extremities. MATERIAL AND METHODS: This retrospective study was performed at three tertiary sarcoma centers and included 150 patients with surgically treated and histology-proven lesions. The training-validation cohort consisted of 114 patients from centers 1 and 2 (n = 64 lipoma, n = 50 ALT). The external test cohort consisted of 36 patients from center 3 (n = 24 lipoma, n = 12 ALT). 3D segmentation was manually performed on T1- and T2-weighted MRI. After extraction and selection of radiomic features, three machine learning classifiers were trained and validated using nested fivefold cross-validation. The best-performing classifier according to previous analysis was evaluated and compared to an experienced musculoskeletal radiologist in the external test cohort. RESULTS: Eight features passed feature selection and were incorporated into the machine learning models. After training and validation (74% ROC-AUC), the best-performing classifier (Random Forest) showed 92% sensitivity and 33% specificity in the external test cohort with no statistical difference compared to the radiologist (p = 0.474). CONCLUSION: MRI radiomics-based machine learning may classify deep-seated lipoma and ALT of the extremities with high sensitivity and negative predictive value, thus potentially serving as a non-invasive screening tool to reduce unnecessary referral to tertiary tumor centers.


Assuntos
Lipoma , Lipossarcoma , Humanos , Estudos Retrospectivos , Imageamento por Ressonância Magnética , Lipossarcoma/patologia , Lipoma/diagnóstico por imagem , Extremidades , Aprendizado de Máquina
18.
J Imaging ; 9(6)2023 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-37367466

RESUMO

To determine the short-term intra-operator precision and inter-operator repeatability of radiofrequency echographic multi-spectrometry (REMS) at the lumbar spine (LS) and proximal femur (FEM). All patients underwent an ultrasound scan of the LS and FEM. Both precision and repeatability, expressed as root-mean-square coefficient of variation (RMS-CV) and least significant change (LSC) were obtained using data from two consecutive REMS acquisitions by the same operator or two different operators, respectively. The precision was also assessed in the cohort stratified according to BMI classification. The mean (±SD) age of our subjects was 48.9 ± 6.8 for LS and 48.3 ± 6.1 for FEM. Precision was assessed on 42 subjects at LS and 37 subjects on FEM. Mean (±SD) BMI was 24.71 ± 4.2 for LS and 25.0 ± 4.84 for FEM. Respectively, the intra-operator precision error (RMS-CV) and LSC resulted in 0.47% and 1.29% at the spine and 0.32% and 0.89% at the proximal femur evaluation. The inter-operator variability investigated at the LS yielded an RMS-CV error of 0.55% and LSC of 1.52%, whereas for the FEM, the RMS-CV was 0.51% and the LSC was 1.40%. Similar values were found when subjects were divided into BMI subgroups. REMS technique provides a precise estimation of the US-BMD independent of subjects' BMI differences.

19.
Semin Musculoskelet Radiol ; 27(2): 198-205, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37011620

RESUMO

Several anatomical variants have been described in the knee. These variants may involve intra- and extra-articular structures, such as menisci, ligaments, plicae, bony structures, muscles, and tendons. They have a variable prevalence, are generally asymptomatic, and are usually discovered incidentally in knee magnetic resonance imaging examinations. A thorough knowledge of these findings is essential to avoid overestimating and overinvestigating normal findings. This article reviews most anatomical variants around the knee, describing how to avoid misinterpretation.


Assuntos
Traumatismos do Joelho , Articulação do Joelho , Humanos , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/patologia , Imageamento por Ressonância Magnética/métodos , Tendões/diagnóstico por imagem , Ligamentos , Ligamentos Articulares/diagnóstico por imagem
20.
JAMIA Open ; 6(2): ooad025, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37063407

RESUMO

Objective: Soft-tissue sarcomas (STSs) of the extremities are a group of malignancies arising from the mesenchymal cells that may develop distant metastases or local recurrence. In this article, we propose a novel methodology aimed to predict metastases and recurrence risk in patients with these malignancies by evaluating magnetic resonance radiomic features that will be formally verified through formal logic models. Materials and Methods: This is a retrospective study based on a public dataset evaluating MRI scans T2-weighted fat-saturated or short tau inversion recovery and patients having "metastases/local recurrence" (group B) or "no metastases/no local recurrence" (group A) as clinical outcomes. Once radiomic features are extracted, they are included in formal models, on which is automatically verified the logic property written by a radiologist and his computer scientists coworkers. Results: Evaluating the Formal Methods efficacy in predicting distant metastases/local recurrence in STSs (group A vs group B), our methodology showed a sensitivity and specificity of 0.81 and 0.67, respectively; this suggests that radiomics and formal verification may be useful in predicting future metastases or local recurrence development in soft tissue sarcoma. Discussion: Authors discussed about the literature to consider Formal Methods as a valid alternative to other Artificial Intelligence techniques. Conclusions: An innovative and noninvasive rigourous methodology can be significant in predicting local recurrence and metastases development in STSs. Future works can be the assessment on multicentric studies to extract objective disease information, enriching the connection between the radiomic quantitative analysis and the radiological clinical evidences.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...