Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Bioinformatics ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775676

RESUMO

MOTIVATION: Cytometry comprises powerful techniques for analyzing the cell heterogeneity of a biological sample by examining the expression of protein markers. These technologies impact especially the field of oncoimmunology, where cell identification is essential to analyze the tumor microenvironment. Several classification tools have been developed for the annotation of cytometry datasets, which include supervised tools that require a training set as a reference (ie, reference-based) and semi-supervised tools based on the manual definition of a marker table. The latter are closer to the traditional annotation of cytometry data based on manual gating. However, they require the manual definition of a marker table that cannot be extracted automatically in a reference-based fashion. Therefore, we are lacking methods that allow both classification approaches while maintaining the high biological interpretability given by the marker table. RESULTS: We present a new tool called GateMeClass (Gate Mining and Classification) which overcomes the limitation of the current methods of classification of cytometry data allowing both semi-supervised and supervised annotation based on a marker table that can be defined manually or extracted from an external annotated dataset. We measured the accuracy of GateMeClass for annotating three well-established benchmark mass cytometry datasets and one flow cytometry dataset. The performance of GateMeClass is comparable to reference-based methods and marker table-based techniques, offering greater flexibility and rapid execution times. AVAILABILITY: GateMeClass is implemented in R language and is publicly available at https://github.com/simo1c/GateMeClass. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

2.
Immunity ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38749447

RESUMO

Tumors weakly infiltrated by T lymphocytes poorly respond to immunotherapy. We aimed to unveil malignancy-associated programs regulating T cell entrance, arrest, and activation in the tumor environment. Differential expression of cell adhesion and tissue architecture programs, particularly the presence of the membrane tetraspanin claudin (CLDN)18 as a signature gene, demarcated immune-infiltrated from immune-depleted mouse pancreatic tumors. In human pancreatic ductal adenocarcinoma (PDAC) and non-small cell lung cancer, CLDN18 expression positively correlated with more differentiated histology and favorable prognosis. CLDN18 on the cell surface promoted accrual of cytotoxic T lymphocytes (CTLs), facilitating direct CTL contacts with tumor cells by driving the mobilization of the adhesion protein ALCAM to the lipid rafts of the tumor cell membrane through actin. This process favored the formation of robust immunological synapses (ISs) between CTLs and CLDN18-positive cancer cells, resulting in increased T cell activation. Our data reveal an immune role for CLDN18 in orchestrating T cell infiltration and shaping the tumor immune contexture.

3.
Sci Rep ; 14(1): 6595, 2024 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503806

RESUMO

Mantle cell lymphoma (MCL) is an incurable B-cell malignancy characterized by a high clinical variability. Therefore, there is a critical need to define parameters that identify high-risk patients for aggressive disease and therapy resistance. B-cell receptor (BCR) signaling is crucial for MCL initiation and progression and is a target for therapeutic intervention. We interrogated BCR signaling proteins (SYK, LCK, BTK, PLCγ2, p38, AKT, NF-κB p65, and STAT5) in 30 primary MCL samples using phospho-specific flow cytometry. Anti-IgM modulation induced heterogeneous BCR signaling responses among samples allowing the identification of two clusters with differential responses. The cluster with higher response was associated with shorter progression free survival (PFS) and overall survival (OS). Moreover, higher constitutive AKT activity was predictive of inferior response to the Bruton's tyrosine kinase inhibitor (BTKi) ibrutinib. Time-to-event analyses showed that MCL international prognostic index (MIPI) high-risk category and higher STAT5 response were predictors of shorter PFS and OS whilst MIPI high-risk category and high SYK response predicted shorter OS. In conclusion, we identified BCR signaling properties associated with poor clinical outcome and resistance to ibrutinib, thus highlighting the prognostic and predictive significance of BCR activity and advancing our understanding of signaling heterogeneity underlying clinical behavior of MCL.


Assuntos
Linfoma de Célula do Manto , Humanos , Adulto , Linfoma de Célula do Manto/patologia , Fator de Transcrição STAT5/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Receptores de Antígenos de Linfócitos B/metabolismo
5.
J Biomed Inform ; 149: 104569, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38104851

RESUMO

The joint modeling of genetic data and brain imaging information allows for determining the pathophysiological pathways of neurodegenerative diseases such as Alzheimer's disease (AD). This task has typically been approached using mass-univariate methods that rely on a complete set of Single Nucleotide Polymorphisms (SNPs) to assess their association with selected image-derived phenotypes (IDPs). However, such methods are prone to multiple comparisons bias and, most importantly, fail to account for potential cross-feature interactions, resulting in insufficient detection of significant associations. Ways to overcome these limitations while reducing the number of traits aim at conveying genetic information at the gene level and capturing the integrated genetic effects of a set of genetic variants, rather than looking at each SNP individually. Their associations with brain IDPs are still largely unexplored in the current literature, though they can uncover new potential genetic determinants for brain modulations in the AD continuum. In this work, we explored an explainable multivariate model to analyze the genetic basis of the grey matter modulations, relying on the AD Neuroimaging Initiative (ADNI) phase 3 dataset. Cortical thicknesses and subcortical volumes derived from T1-weighted Magnetic Resonance were considered to describe the imaging phenotypes. At the same time the genetic counterpart was represented by gene variant scores extracted by the Sequence Kernel Association Test (SKAT) filtering model. Moreover, transcriptomic analysis was carried on to assess the expression of the resulting genes in the main brain structures as a form of validation. Results highlighted meaningful genotype-phenotype interactionsas defined by three latent components showing a significant difference in the projection scores between patients and controls. Among the significant associations, the model highlighted EPHX1 and BCAS1 gene variant scores involved in neurodegenerative and myelination processes, hence relevant for AD. In particular, the first was associated with decreased subcortical volumes and the second with decreasedtemporal lobe thickness. Noteworthy, BCAS1 is particularly expressed in the dentate gyrus. Overall, the proposed approach allowed capturing genotype-phenotype interactions in a restricted study cohort that was confirmed by transcriptomic analysis, offering insights into the underlying mechanisms of neurodegeneration in AD in line with previous findings and suggesting new potential disease biomarkers.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Neuroimagem/métodos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Atrofia/patologia , Proteínas de Neoplasias
6.
J Biomed Inform ; 148: 104552, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37995844

RESUMO

Pangenomics was originally defined as the problem of comparing the composition of genes into gene families within a set of bacterial isolates belonging to the same species. The problem requires the calculation of sequence homology among such genes. When combined with metagenomics, namely for human microbiome composition analysis, gene-oriented pangenome detection becomes a promising method to decipher ecosystem functions and population-level evolution. Established computational tools are able to investigate the genetic content of isolates for which a complete genomic sequence is available. However, there is a plethora of incomplete genomes that are available on public resources, which only a few tools may analyze. Incomplete means that the process for reconstructing their genomic sequence is not complete, and only fragments of their sequence are currently available. However, the information contained in these fragments may play an essential role in the analyses. Here, we present PanDelos-frags, a computational tool which exploits and extends previous results in analyzing complete genomes. It provides a new methodology for inferring missing genetic information and thus for managing incomplete genomes. PanDelos-frags outperforms state-of-the-art approaches in reconstructing gene families in synthetic benchmarks and in a real use case of metagenomics. PanDelos-frags is publicly available at https://github.com/InfOmics/PanDelos-frags.


Assuntos
Genômica , Microbiota , Humanos , Ecossistema , Genoma , Genômica/métodos , Metagenômica/métodos , Software , Microbiota/genética
7.
Sci Total Environ ; 905: 167038, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37709087

RESUMO

Ultrafine particles (UFP) with a diameter of ≤0.1 µm, are contributors to ambient air pollution and derived mainly from traffic emissions, yet their health effects remain poorly characterized. The olfactory mucosa (OM) is located at the rooftop of the nasal cavity and directly exposed to both the environment and the brain. Mounting evidence suggests that pollutant particles affect the brain through the olfactory tract, however, the exact cellular mechanisms of how the OM responds to air pollutants remain poorly known. Here we show that the responses of primary human OM cells are altered upon exposure to UFPs and that different fuels and engines elicit different adverse effects. We used UFPs collected from exhausts of a heavy-duty-engine run with renewable diesel (A0) and fossil diesel (A20), and from a modern diesel vehicle run with renewable diesel (Euro6) and compared their health effects on the OM cells by assessing cellular processes on the functional and transcriptomic levels. Quantification revealed all samples as UFPs with the majority of particles being ≤0.1 µm by an aerodynamic diameter. Exposure to A0 and A20 induced substantial alterations in processes associated with inflammatory response, xenobiotic metabolism, olfactory signaling, and epithelial integrity. Euro6 caused only negligible changes, demonstrating the efficacy of aftertreatment devices. Furthermore, when compared to A20, A0 elicited less pronounced effects on OM cells, suggesting renewable diesel induces less adverse effects in OM cells. Prior studies and these results suggest that PAHs may disturb the inflammatory process and xenobiotic metabolism in the OM and that UFPs might mediate harmful effects on the brain through the olfactory route. This study provides important information on the adverse effects of UFPs in a human-based in vitro model, therefore providing new insight to form the basis for mitigation and preventive actions against the possible toxicological impairments caused by UFP exposure.


Assuntos
Poluentes Atmosféricos , Xenobióticos , Humanos , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Material Particulado/toxicidade , Material Particulado/análise , Emissões de Veículos/toxicidade , Emissões de Veículos/análise , Mucosa Olfatória/química
8.
Database (Oxford) ; 20232023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37450416

RESUMO

The World Health Organization estimates that 9 out of 10 people worldwide breathe air containing high levels of pollutants. Long-term and chronic exposure to high concentrations of air pollutants is associated with deleterious effects on vital organs, including increased inflammation in the lungs, oxidative stress in the heart and disruption of the blood-brain barrier. For this reason, in an effort to find an association between exposure to pollutants and the toxicological effects observable on human health, an online resource collecting and characterizing in detail pollutant molecules could be helpful to investigate their properties and mechanisms of action. We developed a database, APDB, collecting air-pollutant-related data from different online resources, in particular, molecules from the US Environmental Protection Agency, their associated targets and bioassays found in the PubChem chemical repository and their computed molecular descriptors and quantum mechanics properties. A web interface allows (i) to browse data by category, (ii) to navigate the database by querying molecules and targets and (iii) to visualize and download molecule and target structures as well as computed descriptors and similarities. The desired data can be freely exported in textual/tabular format and the whole database in SQL format. Database URL http://apdb.di.univr.it.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Material Particulado/análise , Bases de Dados Factuais , Fatores de Tempo
10.
Nucleic Acids Res ; 51(10): e55, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37021559

RESUMO

Most cell type-specific genes are regulated by the interaction of enhancers with their promoters. The identification of enhancers is not trivial as enhancers are diverse in their characteristics and dynamic in their interaction partners. We present Esearch3D, a new method that exploits network theory approaches to identify active enhancers. Our work is based on the fact that enhancers act as a source of regulatory information to increase the rate of transcription of their target genes and that the flow of this information is mediated by the folding of chromatin in the three-dimensional (3D) nuclear space between the enhancer and the target gene promoter. Esearch3D reverse engineers this flow of information to calculate the likelihood of enhancer activity in intergenic regions by propagating the transcription levels of genes across 3D genome networks. Regions predicted to have high enhancer activity are shown to be enriched in annotations indicative of enhancer activity. These include: enhancer-associated histone marks, bidirectional CAGE-seq, STARR-seq, P300, RNA polymerase II and expression quantitative trait loci (eQTLs). Esearch3D leverages the relationship between chromatin architecture and transcription, allowing the prediction of active enhancers and an understanding of the complex underpinnings of regulatory networks. The method is available at: https://github.com/InfOmics/Esearch3D and https://doi.org/10.5281/zenodo.7737123.


Assuntos
Cromatina , Elementos Facilitadores Genéticos , Software , Cromatina/genética , Expressão Gênica , Regiões Promotoras Genéticas , RNA Polimerase II/genética , RNA Polimerase II/metabolismo
11.
Brief Bioinform ; 24(3)2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37099664

RESUMO

Transcription factors (TFs) are key regulatory proteins that control the transcriptional rate of cells by binding short DNA sequences called transcription factor binding sites (TFBS) or motifs. Identifying and characterizing TFBS is fundamental to understanding the regulatory mechanisms governing the transcriptional state of cells. During the last decades, several experimental methods have been developed to recover DNA sequences containing TFBS. In parallel, computational methods have been proposed to discover and identify TFBS motifs based on these DNA sequences. This is one of the most widely investigated problems in bioinformatics and is referred to as the motif discovery problem. In this manuscript, we review classical and novel experimental and computational methods developed to discover and characterize TFBS motifs in DNA sequences, highlighting their advantages and drawbacks. We also discuss open challenges and future perspectives that could fill the remaining gaps in the field.


Assuntos
Algoritmos , Fatores de Transcrição , Ligação Proteica , Fatores de Transcrição/metabolismo , Sítios de Ligação , Sequência de Bases , Biologia Computacional
12.
J Extracell Vesicles ; 12(1): e12297, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36594832

RESUMO

Hypoxia induces changes in the secretion of extracellular vesicles (EVs) in several non-neuronal cells and pathological conditions. EVs are packed with biomolecules, such as microRNA(miR)-21-5p, which respond to hypoxia. However, the true EV association of miR-21-5p, and its functional or biomarker relevance, are inadequately characterised. Neurons are extremely sensitive cells, and it is not known whether the secretion of neuronal EVs and miR-21-5p are altered upon hypoxia. Here, we characterised the temporal EV secretion profile and cell viability of neurons under hypoxia. Hypoxia induced a rapid increase of miR-21a-5p secretion in the EVs, which preceded the elevation of hypoxia-induced tissue or cellular miR-21a-5p. Prolonged hypoxia induced cell death and the release of morphologically distinct EVs. The EVs protected miR-21a-5p from enzymatic degradation but a remarkable fraction of miR-21a-5p remained fragile and non-EV associated. The increase in miR-21a-5p secretion may have biomarker potential, as high blood levels of miR-21-5p in stroke patients were associated with significant disability at hospital discharge. Our data provides an understanding of the dynamic regulation of EV secretion from neurons under hypoxia and provides a candidate for the prediction of recovery from ischemic stroke.


Assuntos
Vesículas Extracelulares , MicroRNAs , Humanos , Vesículas Extracelulares/metabolismo , MicroRNAs/metabolismo , Neurônios/metabolismo , Biomarcadores/metabolismo
13.
Nat Genet ; 55(1): 34-43, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36522432

RESUMO

CRISPR gene editing holds great promise to modify DNA sequences in somatic cells to treat disease. However, standard computational and biochemical methods to predict off-target potential focus on reference genomes. We developed an efficient tool called CRISPRme that considers single-nucleotide polymorphism (SNP) and indel genetic variants to nominate and prioritize off-target sites. We tested the software with a BCL11A enhancer targeting guide RNA (gRNA) showing promise in clinical trials for sickle cell disease and ß-thalassemia and found that the top candidate off-target is produced by an allele common in African-ancestry populations (MAF 4.5%) that introduces a protospacer adjacent motif (PAM) sequence. We validated that SpCas9 generates strictly allele-specific indels and pericentric inversions in CD34+ hematopoietic stem and progenitor cells (HSPCs), although high-fidelity Cas9 mitigates this off-target. This report illustrates how genetic variants should be considered as modifiers of gene editing outcomes. We expect that variant-aware off-target assessment will become integral to therapeutic genome editing evaluation and provide a powerful approach for comprehensive off-target nomination.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Humanos , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , Células-Tronco Hematopoéticas , Mutação INDEL , RNA Guia de Sistemas CRISPR-Cas
14.
Cancers (Basel) ; 14(19)2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36230576

RESUMO

BACKGROUND: Combined large cell neuroendocrine carcinoma (CoLCNEC) is given by the association of LCNEC with adeno or squamous or any non-neuroendocrine carcinoma. Molecular bases of CoLCNEC pathogenesis are scant and no standardized therapies are defined. METHODS: 44 CoLCNECs: 26 with adenocarcinoma (CoADC), 7 with squamous cell carcinoma (CoSQC), 3 with small cell carcinoma (CoSCLC), 4 with atypical carcinoid (CoAC) and 4 napsin-A positive LCNEC (NapA+), were assessed for alterations in 409 genes and transcriptomic profiling of 20,815 genes. RESULTS: Genes altered included TP53 (n = 30), RB1 (n = 14) and KRAS (n = 13). Targetable alterations included six KRAS G12C mutations and ALK-EML4 fusion gene. Comparison of CoLCNEC transcriptomes with 86 lung cancers of pure histology (8 AC, 19 ADC, 19 LCNEC, 11 SCLC and 29 SQC) identified CoLCNEC as a separate entity of neuroendocrine tumours with three different molecular profiles, two of which showed a non-neuroendocrine lineage. Hypomethylation, activation of MAPK signalling and association to immunotherapy signature specifically characterized each of three CoLCNEC molecular clusters. Prognostic stratification was also provided. CONCLUSIONS: CoLCNECs are an independent histologic category. Our findings support the extension of routine evaluation of KRAS mutations, fusion genes and immune-related markers to offer new perspectives in the therapeutic management of CoLCNEC.

16.
Gigascience ; 112022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35946989

RESUMO

BACKGROUND: Spatial transcriptomics (ST) combines stained tissue images with spatially resolved high-throughput RNA sequencing. The spatial transcriptomic analysis includes challenging tasks like clustering, where a partition among data points (spots) is defined by means of a similarity measure. Improving clustering results is a key factor as clustering affects subsequent downstream analysis. State-of-the-art approaches group data by taking into account transcriptional similarity and some by exploiting spatial information as well. However, it is not yet clear how much the spatial information combined with transcriptomics improves the clustering result. RESULTS: We propose a new clustering method, Stardust, that easily exploits the combination of space and transcriptomic information in the clustering procedure through a manual or fully automatic tuning of algorithm parameters. Moreover, a parameter-free version of the method is also provided where the spatial contribution depends dynamically on the expression distances distribution in the space. We evaluated the proposed methods results by analyzing ST data sets available on the 10x Genomics website and comparing clustering performances with state-of-the-art approaches by measuring the spots' stability in the clusters and their biological coherence. Stability is defined by the tendency of each point to remain clustered with the same neighbors when perturbations are applied. CONCLUSIONS: Stardust is an easy-to-use methodology allowing to define how much spatial information should influence clustering on different tissues and achieving more stable results than state-of-the-art approaches.


Assuntos
Análise de Dados , Transcriptoma , Algoritmos , Análise por Conglomerados
18.
J Neuroinflammation ; 19(1): 147, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35706029

RESUMO

BACKGROUND: Microglia are the endogenous immune cells of the brain and act as sensors of pathology to maintain brain homeostasis and eliminate potential threats. In Alzheimer's disease (AD), toxic amyloid beta (Aß) accumulates in the brain and forms stiff plaques. In late-onset AD accounting for 95% of all cases, this is thought to be due to reduced clearance of Aß. Human genome-wide association studies and animal models suggest that reduced clearance results from aberrant function of microglia. While the impact of neurochemical pathways on microglia had been broadly studied, mechanical receptors regulating microglial functions remain largely unexplored. METHODS: Here we showed that a mechanotransduction ion channel, PIEZO1, is expressed and functional in human and mouse microglia. We used a small molecule agonist, Yoda1, to study how activation of PIEZO1 affects AD-related functions in human induced pluripotent stem cell (iPSC)-derived microglia-like cells (iMGL) under controlled laboratory experiments. Cell survival, metabolism, phagocytosis and lysosomal activity were assessed using real-time functional assays. To evaluate the effect of activation of PIEZO1 in vivo, 5-month-old 5xFAD male mice were infused daily with Yoda1 for two weeks through intracranial cannulas. Microglial Iba1 expression and Aß pathology were quantified with immunohistochemistry and confocal microscopy. Published human and mouse AD datasets were used for in-depth analysis of PIEZO1 gene expression and related pathways in microglial subpopulations. RESULTS: We show that PIEZO1 orchestrates Aß clearance by enhancing microglial survival, phagocytosis, and lysosomal activity. Aß inhibited PIEZO1-mediated calcium transients, whereas activation of PIEZO1 with a selective agonist, Yoda1, improved microglial phagocytosis resulting in Aß clearance both in human and mouse models of AD. Moreover, PIEZO1 expression was associated with a unique microglial transcriptional phenotype in AD as indicated by assessment of cellular metabolism, and human and mouse single-cell datasets. CONCLUSION: These results indicate that the compromised function of microglia in AD could be improved by controlled activation of PIEZO1 channels resulting in alleviated Aß burden. Pharmacological regulation of these mechanoreceptors in microglia could represent a novel therapeutic paradigm for AD.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Células-Tronco Pluripotentes Induzidas , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Modelos Animais de Doenças , Estudo de Associação Genômica Ampla , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Canais Iônicos/metabolismo , Masculino , Mecanotransdução Celular , Camundongos , Camundongos Transgênicos , Microglia/metabolismo
19.
Int J Mol Sci ; 23(8)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35456941

RESUMO

Olfactory function, orchestrated by the cells of the olfactory mucosa at the rooftop of the nasal cavity, is disturbed early in the pathogenesis of Alzheimer's disease (AD). Biometals including zinc and calcium are known to be important for sense of smell and to be altered in the brains of AD patients. Little is known about elemental homeostasis in the AD patient olfactory mucosa. Here we aimed to assess whether the disease-related alterations to biometal homeostasis observed in the brain are also reflected in the olfactory mucosa. We applied RNA sequencing to discover gene expression changes related to metals in olfactory mucosal cells of cognitively healthy controls, individuals with mild cognitive impairment and AD patients, and performed analysis of the elemental content to determine metal levels. Results demonstrate that the levels of zinc, calcium and sodium are increased in the AD olfactory mucosa concomitantly with alterations to 17 genes related to metal-ion binding or metal-related function of the protein product. A significant elevation in alpha-2-macroglobulin, a known metal-binding biomarker correlated with brain disease burden, was observed on the gene and protein levels in the olfactory mucosa cells of AD patients. These data demonstrate that the olfactory mucosa cells derived from AD patients recapitulate certain impairments of biometal homeostasis observed in the brains of patients.


Assuntos
Doença de Alzheimer , Oligoelementos , Doença de Alzheimer/metabolismo , Cálcio/metabolismo , Quelantes/metabolismo , Humanos , Mucosa Olfatória/metabolismo , Oligoelementos/metabolismo , Zinco/metabolismo
20.
Bioinformatics ; 38(9): 2631-2632, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35289871

RESUMO

MOTIVATION: Computational tools for pangenomic analysis have gained increasing interest over the past two decades in various applications such as evolutionary studies and vaccine development. Synthetic benchmarks are essential for the systematic evaluation of their performance. Currently, benchmarking tools represent a genome as a set of genetic sequences and fail to simulate the complete information of the genomes, which is essential for evaluating pangenomic detection between fragmented genomes. RESULTS: We present PANPROVA, a benchmark tool to simulate prokaryotic pangenomic evolution by evolving the complete genomic sequence of an ancestral isolate. In this way, the possibility of operating in the preassembly phase is enabled. Gene set variations, sequence variation and horizontal acquisition from a pool of external genomes are the evolutionary features of the tool. AVAILABILITY AND IMPLEMENTATION: PANPROVA is publicly available at https://github.com/InfOmics/PANPROVA. The manuscript explicitelly refers to the github repository. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Genoma , Software , Análise de Sequência de DNA , Sequenciamento de Nucleotídeos em Larga Escala , Benchmarking
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...