Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Semin Cell Dev Biol ; 159-160: 64-65, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38364713
2.
Semin Cell Dev Biol ; 156: 121-129, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-37852903

RESUMO

Satellite DNA sequences are an integral part of centromeres, regions critical for faithful segregation of chromosomes during cell division. Because of their complex repetitive structure, satellite DNA may act as a barrier to DNA replication and other DNA based transactions ultimately resulting in chromosome breakage. Over the past two decades, several DNA repair proteins have been shown to bind and function at centromeres. While the importance of these repair factors is highlighted by various structural and numerical chromosome aberrations resulting from their inactivation, their roles in helping to maintain genome stability by solving the intrinsic difficulties of satellite DNA replication or promoting their repair are just starting to emerge. In this review, we summarize the current knowledge on the role of DNA repair and DNA damage response proteins in maintaining the structure and function of centromeres in different contexts. We also report the recent connection between the roles of specific DNA repair factors at these genomic loci with age-related increase of chromosomal instability under physiological and pathological conditions.


Assuntos
Centrômero , DNA Satélite , Humanos , Centrômero/genética , DNA , Aneuploidia , Instabilidade Genômica/genética
3.
Semin Cell Dev Biol ; 156: 130-140, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-37926668

RESUMO

Maintenance of genome stability relies on functional centromeres for correct chromosome segregation and faithful inheritance of the genetic information. The human centromere is the primary constriction within mitotic chromosomes made up of repetitive alpha-satellite DNA hierarchically organized in megabase-long arrays of near-identical higher order repeats (HORs). Centromeres are epigenetically specified by the presence of the centromere-specific histone H3 variant, CENP-A, which enables the assembly of the kinetochore for microtubule attachment. Notably, centromeric DNA is faithfully inherited as intact haplotypes from the parents to the offspring without intervening recombination, yet, outside of meiosis, centromeres are akin to common fragile sites (CFSs), manifesting crossing-overs and ongoing sequence instability. Consequences of DNA changes within the centromere are just starting to emerge, with unclear effects on intra- and inter-generational inheritance driven by centromere's essential role in kinetochore assembly. Here, we review evidence of meiotic selection operating to mitigate centromere drive, as well as recent reports on centromere damage, recombination and repair during the mitotic cell division. We propose an antagonistic pleiotropy interpretation to reconcile centromere DNA instability as both driver of aneuploidy that underlies degenerative diseases, while also potentially necessary for the maintenance of homogenized HORs for centromere function. We attempt to provide a framework for this conceptual leap taking into consideration the structural interface of centromere-kinetochore interaction and present case scenarios for its malfunctioning. Finally, we offer an integrated working model to connect DNA instability, chromatin, and structural changes with functional consequences on chromosome integrity.


Assuntos
Centrômero , DNA Satélite , Humanos , DNA Satélite/genética , Centrômero/genética , Cromatina , DNA , Meiose/genética
4.
Nat Commun ; 14(1): 5104, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37607906

RESUMO

Histone post-translational modifications promote a chromatin environment that controls transcription, DNA replication and repair, but surprisingly few phosphorylations have been documented. We report the discovery of histone H3 serine-57 phosphorylation (H3S57ph) and show that it is implicated in different DNA repair pathways from fungi to vertebrates. We identified CHK1 as a major human H3S57 kinase, and disrupting or constitutively mimicking H3S57ph had opposing effects on rate of recovery from replication stress, 53BP1 chromatin binding, and dependency on RAD52. In fission yeast, mutation of all H3 alleles to S57A abrogated DNA repair by both non-homologous end-joining and homologous recombination, while cells with phospho-mimicking S57D alleles were partly compromised for both repair pathways, presented aberrant Rad52 foci and were strongly sensitised to replication stress. Mechanistically, H3S57ph loosens DNA-histone contacts, increasing nucleosome mobility, and interacts with H3K56. Our results suggest that dynamic phosphorylation of H3S57 is required for DNA repair and recovery from replication stress, opening avenues for investigating the role of this modification in other DNA-related processes.


Assuntos
Histonas , Vírus da Influenza A , Humanos , Animais , Fosforilação , Processamento de Proteína Pós-Traducional , Reparo do DNA , Cromatina
5.
Cell ; 186(9): 1985-2001.e19, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37075754

RESUMO

Aneuploidy, the presence of chromosome gains or losses, is a hallmark of cancer. Here, we describe KaryoCreate (karyotype CRISPR-engineered aneuploidy technology), a system that enables the generation of chromosome-specific aneuploidies by co-expression of an sgRNA targeting chromosome-specific CENPA-binding ɑ-satellite repeats together with dCas9 fused to mutant KNL1. We design unique and highly specific sgRNAs for 19 of the 24 chromosomes. Expression of these constructs leads to missegregation and induction of gains or losses of the targeted chromosome in cellular progeny, with an average efficiency of 8% for gains and 12% for losses (up to 20%) validated across 10 chromosomes. Using KaryoCreate in colon epithelial cells, we show that chromosome 18q loss, frequent in gastrointestinal cancers, promotes resistance to TGF-ß, likely due to synergistic hemizygous deletion of multiple genes. Altogether, we describe an innovative technology to create and study chromosome missegregation and aneuploidy in the context of cancer and beyond.


Assuntos
Centrômero , Técnicas Genéticas , Humanos , Aneuploidia , Centrômero/genética , Deleção Cromossômica , Neoplasias/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas
6.
Mol Biol Cell ; 34(6): ar61, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36947236

RESUMO

The human centromere comprises large arrays of repetitive α-satellite DNA at the primary constriction of mitotic chromosomes. In addition, centromeres are epigenetically specified by the centromere-specific histone H3 variant CENP-A that supports kinetochore assembly to enable chromosome segregation. Because CENP-A is bound to only a fraction of the α-satellite elements within the megabase-sized centromere DNA, correlating the three-dimensional (3D) organization of α-satellite DNA and CENP-A remains elusive. To visualize centromere organization within a single chromatid, we used a combination of the centromere chromosome orientation fluorescence in situ hybridization (Cen-CO-FISH) technique together with structured illumination microscopy. Cen-CO-FISH allows the differential labeling of the sister chromatids without the denaturation step used in conventional FISH that may affect DNA structure. Our data indicate that α-satellite DNA is arranged in a ring-like organization within prometaphase chromosomes, in the presence or absence of spindle's microtubules. Using expansion microscopy, we found that CENP-A organization within mitotic chromosomes follows a rounded pattern similar to that of α-satellite DNA, often visible as a ring thicker at the outer surface oriented toward the kinetochore-microtubule interface. Collectively, our data provide a 3D reconstruction of α-satellite DNA along with CENP-A clusters that outlines the overall architecture of the mitotic centromere.


Assuntos
DNA Satélite , Microscopia , Humanos , Proteína Centromérica A/metabolismo , Hibridização in Situ Fluorescente , Proteínas Cromossômicas não Histona/metabolismo , Autoantígenos/metabolismo , Centrômero/metabolismo , DNA
7.
bioRxiv ; 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38168337

RESUMO

Comparative analysis of recent human genome assemblies highlights profound sequence divergence that peaks within polymorphic loci such as centromeres. This raises the question about the adequacy of relying on human reference genomes to accurately analyze sequencing data derived from experimental cell lines. Here, we generated the complete diploid genome assembly for the human retinal epithelial cells (RPE-1), a widely used non-cancer laboratory cell line with a stable karyotype, to use as matched reference for multi-omics sequencing data analysis. Our RPE1v1.0 assembly presents completely phased haplotypes and chromosome-level scaffolds that span centromeres with ultra-high base accuracy (>QV60). We mapped the haplotype-specific genomic variation specific to this cell line including t(Xq;10q), a stable 73.18 Mb duplication of chromosome 10 translocated onto the microdeleted chromosome X telomere t(Xq;10q). Polymorphisms between haplotypes of the same genome reveals genetic and epigenetic variation for all chromosomes, especially at centromeres. The RPE-1 assembly as matched reference genome improves mapping quality of multi-omics reads originating from RPE-1 cells with drastic reduction in alignments mismatches compared to using the most complete human reference to date (CHM13). Leveraging the accuracy achieved using a matched reference, we were able to identify the kinetochore sites at base pair resolution and show unprecedented variation between haplotypes. This work showcases the use of matched reference genomes for multiomics analyses and serves as the foundation for a call to comprehensively assemble experimentally relevant cell lines for widespread application.

8.
Commun Biol ; 5(1): 1395, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36543851

RESUMO

Replication stress (RS) is a leading cause of genome instability and cancer development. A substantial source of endogenous RS originates from the encounter between the transcription and replication machineries operating on the same DNA template. This occurs predominantly under specific contexts, such as oncogene activation, metabolic stress, or a deficiency in proteins that specifically act to prevent or resolve those transcription-replication conflicts (TRCs). One such protein is Senataxin (SETX), an RNA:DNA helicase involved in resolution of TRCs and R-loops. Here we identify a synthetic lethal interaction between SETX and proteins of the Fanconi anemia (FA) pathway. Depletion of SETX induces spontaneous under-replication and chromosome fragility due to active transcription and R-loops that persist in mitosis. These fragile loci are targeted by the Fanconi anemia protein, FANCD2, to facilitate the resolution of under-replicated DNA, thus preventing chromosome mis-segregation and allowing cells to proliferate. Mechanistically, we show that FANCD2 promotes mitotic DNA synthesis that is dependent on XPF and MUS81 endonucleases. Importantly, co-depleting FANCD2 together with SETX impairs cancer cell proliferation, without significantly affecting non-cancerous cells. Therefore, we uncovered a synthetic lethality between SETX and FA proteins for tolerance of transcription-mediated RS that may be exploited for cancer therapy.


Assuntos
DNA Helicases , Proteína do Grupo de Complementação D2 da Anemia de Fanconi , Neoplasias , RNA Helicases , Humanos , DNA , DNA Helicases/genética , DNA Helicases/metabolismo , Replicação do DNA , Anemia de Fanconi/metabolismo , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Enzimas Multifuncionais/genética , Enzimas Multifuncionais/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , RNA Helicases/genética , RNA Helicases/metabolismo
9.
Cancer Metastasis Rev ; 40(3): 909-924, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34097189

RESUMO

Cancer is underlined by genetic changes. In an unprecedented international effort, the Pan-Cancer Analysis of Whole Genomes (PCAWG) of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA) sequenced the tumors of over two thousand five hundred patients across 38 different cancer types, as well as the corresponding healthy tissue, with the aim of identifying genome-wide mutations exclusively found in cancer and uncovering new genetic changes that drive tumor formation. What set this project apart from earlier efforts is the use of whole genome sequencing (WGS) that enabled to explore alterations beyond the coding DNA, into cancer's non-coding genome. WGS of the entire cohort allowed to tease apart driving mutations that initiate and support carcinogenesis from passenger mutations that do not play an overt role in the disease. At least one causative mutation was found in 95% of all cancers, with many tumors showing an average of 5 driver mutations. The PCAWG Project also assessed the transcriptional output altered in cancer and rebuilt the evolutionary history of each tumor showing that initial driver mutations can occur years if not decades prior to a diagnosis. Here, I provide a concise review of the Pan-Cancer Project papers published on February 2020, along with key computational tools and the digital framework generated as part of the project. This represents an historic effort by hundreds of international collaborators, which provides a comprehensive understanding of cancer genetics, with publicly available data and resources representing a treasure trove of information to advance cancer research for years to come.


Assuntos
Genoma Humano , Neoplasias , Genoma Humano/genética , Humanos , Mutação , Neoplasias/epidemiologia , Neoplasias/genética , Sequenciamento Completo do Genoma
10.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33653953

RESUMO

Chromosome segregation relies on centromeres, yet their repetitive DNA is often prone to aberrant rearrangements under pathological conditions. Factors that maintain centromere integrity to prevent centromere-associated chromosome translocations are unknown. Here, we demonstrate the importance of the centromere-specific histone H3 variant CENP-A in safeguarding DNA replication of alpha-satellite repeats to prevent structural aneuploidy. Rapid removal of CENP-A in S phase, but not other cell-cycle stages, caused accumulation of R loops with increased centromeric transcripts, and interfered with replication fork progression. Replication without CENP-A causes recombination at alpha-satellites in an R loop-dependent manner, unfinished replication, and anaphase bridges. In turn, chromosome breakage and translocations arise specifically at centromeric regions. Our findings provide insights into how specialized centromeric chromatin maintains the integrity of transcribed noncoding repetitive DNA during S phase.


Assuntos
Aneuploidia , Proteína Centromérica A/metabolismo , Centrômero/metabolismo , Cromatina/metabolismo , Cromossomos Humanos/metabolismo , Replicação do DNA , Linhagem Celular , Centrômero/genética , Proteína Centromérica A/genética , Cromatina/genética , Cromossomos Humanos/genética , Humanos , Fase S
11.
Front Genet ; 12: 810793, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35154254

RESUMO

Glioblastoma multiforme (GBM) is a malignant tumor of the central nervous system (CNS). The poor prognosis of GBM due to resistance to therapy has been associated with high chromosomal instability (CIN). Replication stress is a major cause of CIN that manifests as chromosome rearrangements, fragility, and breaks, including those cytologically expressed within specific chromosome regions named common fragile sites (CFSs). In this work, we characterized the expression of human CFSs in the glioblastoma U-251 MG cell line upon treatment with the inhibitor of DNA polymerase alpha aphidicolin (APH). We observed 52 gaps/breaks located within previously characterized CFSs. We found 17 to be CFSs in GBM cells upon treatment with APH, showing a frequency equal to at least 1% of the total gaps/breaks. We report that two CFSs localized to regions FRA2E (2p13/p12) and FRA2F (2q22) were only found in U-251 MG cells, but not lymphocytes or fibroblasts, after APH treatment. Notably, these glioblastoma-specific CFSs had a relatively high expression compared to the other CFSs with breakage frequency between ∼7 and 9%. Presence of long genes, incomplete replication, and delayed DNA synthesis during mitosis (MiDAS) after APH treatment suggest that an impaired replication process may contribute to this loci-specific fragility in U-251 MG cells. Altogether, our work offers a characterization of common fragile site expression in glioblastoma U-251 MG cells that may be further exploited for cytogenetic and clinical studies to advance our understanding of this incurable cancer.

12.
Semin Cell Dev Biol ; 113: 97-112, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33109442

RESUMO

Repeat sequences account for over half of the human genome and represent a significant source of variation that underlies physiological and pathological states. Yet, their study has been hindered due to limitations in short-reads sequencing technology and difficulties in assembly. A important category of repetitive DNA in the human genome is comprised of tandem repeats (TRs), where repetitive units are arranged in a head-to-tail pattern. Compared to other regions of the genome, TRs carry between 10 and 10,000 fold higher mutation rate. There are several mutagenic mechanisms that can give rise to this propensity toward instability, but their precise contribution remains speculative. Given the high degree of homology between these sequences and their arrangement in tandem, once damaged, TRs have an intrinsic propensity to undergo aberrant recombination with non-allelic exchange and generate harmful rearrangements that may undermine the stability of the entire genome. The dynamic mutagenesis at TRs has been found to underlie individual polymorphism associated with neurodegenerative and neuromuscular disorders, as well as complex genetic diseases like cancer and diabetes. Here, we review our current understanding of the surveillance and repair mechanisms operating within these regions, and we describe how alterations in these protective processes can readily trigger mutational signatures found at TRs, ultimately resulting in the pathological correlation between TRs instability and human diseases. Finally, we provide a viewpoint to counter the detrimental effects that TRs pose in light of their selection and conservation, as important drivers of human evolution.


Assuntos
Instabilidade Genômica/genética , Sequências de Repetição em Tandem/genética , Humanos
13.
Genes (Basel) ; 11(8)2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32784998

RESUMO

Centromeres are essential genetic elements that enable spindle microtubule attachment for chromosome segregation during mitosis and meiosis. While this function is preserved across species, centromeres display an array of dynamic features, including: (1) rapidly evolving DNA; (2) wide evolutionary diversity in size, shape and organization; (3) evidence of mutational processes to generate homogenized repetitive arrays that characterize centromeres in several species; (4) tolerance to changes in position, as in the case of neocentromeres; and (5) intrinsic fragility derived by sequence composition and secondary DNA structures. Centromere drive underlies rapid centromere DNA evolution due to the "selfish" pursuit to bias meiotic transmission and promote the propagation of stronger centromeres. Yet, the origins of other dynamic features of centromeres remain unclear. Here, we review our current understanding of centromere evolution and plasticity. We also detail the mutagenic processes proposed to shape the divergent genetic nature of centromeres. Changes to centromeres are not simply evolutionary relics, but ongoing shifts that on one side promote centromere flexibility, but on the other can undermine centromere integrity and function with potential pathological implications such as genome instability.


Assuntos
Centrômero/genética , Evolução Molecular , Regulação da Expressão Gênica , Animais , Proteína Centromérica A/química , Proteína Centromérica A/genética , Mapeamento Cromossômico , Sequência Conservada , Variação Genética , Instabilidade Genômica , Humanos , Mutagênese , Sequências Repetitivas de Ácido Nucleico , Especificidade da Espécie
14.
Nucleus ; 11(1): 205-218, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32835589

RESUMO

The nuclear envelope compartmentalizes chromatin in eukaryotic cells. The main nuclear envelope components are lamins that associate with a panoply of factors, including the LEM domain proteins. The nuclear envelope of mammalian cells opens up during cell division. It is reassembled and associated with chromatin at the end of mitosis when telomeres tether to the nuclear periphery. Lamins, LEM domain proteins, and DNA binding factors, as BAF, contribute to the reorganization of chromatin. In this context, an emerging role is that of the ESCRT complex, a machinery operating in multiple membrane assembly pathways, including nuclear envelope reformation. Research in this area is unraveling how, mechanistically, ESCRTs link to nuclear envelope associated factors as LEM domain proteins. Importantly, ESCRTs work also during interphase for repairing nuclear envelope ruptures. Altogether the advances in this field are giving new clues for the interpretation of diseases implicating nuclear envelope fragility, as laminopathies and cancer. ABBREVIATIONS: na, not analyzed; ko, knockout; kd, knockdown; NE, nuclear envelope; LEM, LAP2-emerin-MAN1 (LEM)-domain containing proteins; LINC, linker of nucleoskeleton and cytoskeleton complexes; Cyt, cytoplasm; Chr, chromatin; MB, midbody; End, endosomes; Tel, telomeres; INM, inner nuclear membrane; NP, nucleoplasm; NPC, Nuclear Pore Complex; ER, Endoplasmic Reticulum; SPB, spindle pole body.


Assuntos
Cromatina/metabolismo , Laminopatias/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Membrana Nuclear/metabolismo , Animais , Cromatina/genética , Cromatina/patologia , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Humanos , Interfase , Laminopatias/genética , Laminopatias/patologia , Laminas/genética , Laminas/metabolismo , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/patologia , Membrana Nuclear/genética , Membrana Nuclear/patologia
15.
Genes (Basel) ; 11(7)2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32708654

RESUMO

Centromeres are the complex structures responsible for the proper segregation of chromosomes during cell division. Structural or functional alterations of the centromere cause aneuploidies and other chromosomal aberrations that can induce cell death with consequences on health and survival of the organism as a whole. Because of their essential function in the cell, centromeres have evolved high flexibility and mechanisms of tolerance to preserve their function following stress, whether it is originating from within or outside the cell. Here, we review the main epigenetic mechanisms of centromeres' adaptability to preserve their functional stability, with particular reference to neocentromeres and holocentromeres. The centromere position can shift in response to altered chromosome structures, but how and why neocentromeres appear in a given chromosome region are still open questions. Models of neocentromere formation developed during the last few years will be hereby discussed. Moreover, we will discuss the evolutionary significance of diffuse centromeres (holocentromeres) in organisms such as nematodes. Despite the differences in DNA sequences, protein composition and centromere size, all of these diverse centromere structures promote efficient chromosome segregation, balancing genome stability and adaptability, and ensuring faithful genome inheritance at each cellular generation.


Assuntos
Centrômero/metabolismo , Epigênese Genética/fisiologia , Evolução Molecular , Instabilidade Genômica/genética , Adaptação Fisiológica/genética , Animais , Centrômero/genética , Segregação de Cromossomos/fisiologia , Epigenômica , Humanos
16.
Genes (Basel) ; 11(3)2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32204553

RESUMO

Common fragile sites (CFSs) are particularly vulnerable regions of the genome that become visible as breaks, gaps, or constrictions on metaphase chromosomes when cells are under replicative stress. Impairment in DNA replication, late replication timing, enrichment of A/T nucleotides that tend to form secondary structures, the paucity of active or inducible replication origins, the generation of R-loops, and the collision between replication and transcription machineries on particularly long genes are some of the reported characteristics of CFSs that may contribute to their tissue-specific fragility. Here, we validated the induction of two CFSs previously found in the human fetal lung fibroblast line, Medical Research Council cell strain 5 (MRC-5), in another cell line derived from the same fetal tissue, Institute for Medical Research-90 cells (IMR-90). After induction of CFSs through aphidicolin, we confirmed the expression of the CFS 1p31.1 on chromosome 1 and CFS 3q13.3 on chromosome 3 in both fetal lines. Interestingly, these sites were found to not be fragile in lymphocytes, suggesting a role for epigenetic or transcriptional programs for this tissue specificity. Both these sites contained late-replicating genes NEGR1 (neuronal growth regulator 1) at 1p31.1 and LSAMP (limbic system-associated membrane protein) at 3q13.3, which are much longer, 0.880 and 1.4 Mb, respectively, than the average gene length. Given the established connection between long genes and CFS, we compiled information from the literature on all previously identified CFSs expressed in fibroblasts and lymphocytes in response to aphidicolin, including the size of the genes contained in each fragile region. Our comprehensive analysis confirmed that the genes found within CFSs are longer than the average human gene; interestingly, the two longest genes in the human genome are found within CFSs: Contactin Associated Protein 2 gene (CNTNAP2) in a lymphocytes' CFS, and Duchenne muscular dystrophy gene (DMD) in a CFS expressed in both lymphocytes and fibroblasts. This indicates that the presence of very long genes is a unifying feature of all CFSs. We also obtained replication profiles of the 1p31.1 and 3q13.3 sites under both perturbed and unperturbed conditions using a combination of fluorescent in situ hybridization (FISH) and immunofluorescence against bromodeoxyuridine (BrdU) on interphase nuclei. Our analysis of the replication dynamics of these CFSs showed that, compared to lymphocytes where these regions are non-fragile, fibroblasts display incomplete replication of the fragile alleles, even in the absence of exogenous replication stress. Our data point to the existence of intrinsic features, in addition to the presence of long genes, which affect DNA replication of the CFSs in fibroblasts, thus promoting chromosomal instability in a tissue-specific manner.


Assuntos
Sítios Frágeis do Cromossomo , Replicação do DNA , Linhagem Celular , Células Cultivadas , Cromossomos Humanos Par 1/genética , Cromossomos Humanos Par 3/genética , Distrofina/genética , Feminino , Humanos , Masculino , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Especificidade de Órgãos
17.
Nat Cell Biol ; 21(4): 531-532, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30643186

RESUMO

In the version of this Article originally published, Supplementary Fig. 6j showed incorrect values for the LS and AG4 glutathione samples, and Fig. 5c and Supplementary Fig. 6j did not include all n = 6 samples for the hESC, Y-hiPSC and AG4-ZSCAN10 groups as was stated in the legend. In addition, the bars for hESC, Y-hiPSC, AG4-ZCNAN10, AG4 and LS in Supplementary Fig. 6i and j have been reproduced from Fig. 5b and c, respectively. Fig. 6e was also reproduced in the lower panel of Supplementary Fig. 6h, to enable direct comparison of the data, however this was not explained in the original figure legends. The correct versions of these figures and their legends are shown below, and Supplementary Table 5 has been updated with the source data for all numerical data in the manuscript.

18.
Genes (Basel) ; 9(12)2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-30544645

RESUMO

Maintenance of an intact genome is essential for cellular and organismal homeostasis. The centromere is a specialized chromosomal locus required for faithful genome inheritance at each round of cell division. Human centromeres are composed of large tandem arrays of repetitive alpha-satellite DNA, which are often sites of aberrant rearrangements that may lead to chromosome fusions and genetic abnormalities. While the centromere has an essential role in chromosome segregation during mitosis, the long and repetitive nature of the highly identical repeats has greatly hindered in-depth genetic studies, and complete annotation of all human centromeres is still lacking. Here, we review our current understanding of human centromere genetics and epigenetics as well as recent investigations into the role of centromere DNA in disease, with a special focus on cancer, aging, and human immunodeficiency⁻centromeric instability⁻facial anomalies (ICF) syndrome. We also highlight the causes and consequences of genomic instability at these large repetitive arrays and describe the possible sources of centromere fragility. The novel connection between alpha-satellite DNA instability and human pathological conditions emphasizes the importance of obtaining a truly complete human genome assembly and accelerating our understanding of centromere repeats' role in physiology and beyond.

19.
Proc Natl Acad Sci U S A ; 115(5): E876-E885, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29339483

RESUMO

Mutations in CDCA7, the SNF2 family protein HELLS (LSH), or the DNA methyltransferase DNMT3b cause immunodeficiency-centromeric instability-facial anomalies (ICF) syndrome. While it has been speculated that DNA methylation defects cause this disease, little is known about the molecular function of CDCA7 and its functional relationship to HELLS and DNMT3b. Systematic analysis of how the cell cycle, H3K9 methylation, and the mitotic kinase Aurora B affect proteomic profiles of chromatin in Xenopus egg extracts revealed that HELLS and CDCA7 form a stoichiometric complex on chromatin, in a manner sensitive to Aurora B. Although HELLS alone fails to remodel nucleosomes, we demonstrate that the HELLS-CDCA7 complex possesses nucleosome remodeling activity. Furthermore, CDCA7 is essential for loading HELLS onto chromatin, and CDCA7 harboring patient ICF mutations fails to recruit the complex to chromatin. Together, our study identifies a unique bipartite nucleosome remodeling complex where the functional remodeling activity is split between two proteins and thus delineates the defective pathway in ICF syndrome.


Assuntos
DNA Helicases/metabolismo , Face/anormalidades , Síndromes de Imunodeficiência/genética , Mutação , Proteínas Nucleares/metabolismo , Animais , Aurora Quinase B/metabolismo , Ciclo Celular , Cromatina/química , Análise por Conglomerados , DNA (Citosina-5-)-Metiltransferases/genética , DNA Helicases/genética , Metilação de DNA , Células HeLa , Histonas/metabolismo , Humanos , Proteínas Nucleares/genética , Nucleossomos/química , Óvulo/metabolismo , Peptídeos/química , Doenças da Imunodeficiência Primária , Ligação Proteica , Domínios Proteicos , Proteômica , Interferência de RNA , Xenopus laevis , DNA Metiltransferase 3B
20.
Bio Protoc ; 8(7): e2792, 2018 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-34179295

RESUMO

Human centromeres are composed of large tandem arrays of repetitive alpha satellite DNA, which are often sites of aberrant rearrangement in cancers ( Mitelman et al., 1997 ; Padilla- Nash et al., 2001 ). To date, annotation of the human centromere repetitive sequences remains incomplete, greatly hindering in-depth functional studies of these regions essential for chromosome segregation. In order to monitor sister chromatid exchange happening at the centromere (C-SCE) due to recombination and mutagenic events, I have applied the Chromosome-Orientation Fluorescence in situ Hybridization (CO-FISH) technique to centromeres (Cen-CO-FISH) in human cells. This hybridization-based method involves (1) the incorporation of nucleotide analogs through a single round of replication, (2) enzymatic digestion of the newly synthesized DNA strand and (3) subsequent hybridization of single-stranded probes, in absence of a denaturation step. The resulting signal allows to differentially label each sister chromatid based on the 5'-3' directionality of the DNA and to score aberrant staining patterns indicative of C-SCE. The Cen-CO-FISH method applied to human centromeres revealed that human centromeres indeed undergo recombination in cycling cells resulting in C-SCE, and centromere instability is enhanced in cancer cell lines and primary cells undergoing senescence (Giunta and Funabiki, 2017). Here, I present the detailed protocol of the preparation, experimental procedure and data acquisition for the Cen-CO-FISH method in human cells. It also includes a conceptual overview of the technique, with examples of representative images and scoring guidelines. The Cen-CO-FISH represents a valuable tool to facilitate exploration of centromere repeats.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...