Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Chem ; 11: 1224336, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37601902

RESUMO

In this study, long-lived nuclear singlet order methods are combined with diffusion tensor imaging with the purpose of characterizing the full diffusion tensor of molecules diffusing freely in large pores of up to a millimeter in size. Such sizes are out of reach in conventional diffusion tensor imaging because of the limitations imposed by the relaxation decay constant of the longitudinal magnetization. A singlet-assisted diffusion tensor imaging methodology able to circumvent such limitations is discussed, and the new possibilities that it offers are demonstrated through simulation and experiments on plastic phantoms containing cylindrical channels of 1 mm in diameter.

2.
Chemistry ; 29(60): e202301852, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37505481

RESUMO

The recent disclosure of the ability of aromatic isocyanides to harvest visible light and act as single electron acceptors when reacting with tertiary aromatic amines has triggered a renewed interest in their application to the development of green photoredox catalytic methodologies. Accordingly, the present work explores their ability to promote the generation of both alkyl and acyl radicals starting from radical precursors such as Hantzsch esters, potassium alkyltrifluoroborates, and α-oxoacids. Mechanistic studies involving UV-visible absorption and fluorescence experiments, electrochemical measurements of the ground-state redox potentials along with computational calculations of both the ground- and the excited-state redox potentials of a set of nine different aromatic isocyanides provide key insights to promote a rationale design of a new generation of isocyanide-based organic photoredox catalysts. Importantly, the green potential of the investigated chemistry is demonstrated by a direct and easy access to deuterium labeled compounds.

3.
Front Chem ; 9: 668044, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33981674

RESUMO

Hyperpolarization techniques can enormously enhance the NMR signal thus allowing the exploitation of hyperpolarized substrates for in-vivo MRI applications. The short lifetime of hyperpolarized spin order poses significant limitations in such applications. Spin order storage can be prolonged through the use of long-lived spin states. Additionally, the storage of spin polarization-either in the form of longitudinal or singlet order-can be prolonged in low viscosity solutions. Here, we report the use of low viscosity liquid-CO2 solutions to store nuclear spin polarization in the form of longitudinal and singlet order for extended periods. Our results demonstrate that this storage time can be considerably sustained in liquid-CO2 solutions in comparison to other low viscosity solvents, opening up the possibility of new, exciting storage experiments in the future.

4.
Nano Lett ; 17(8): 5156-5162, 2017 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-28730821

RESUMO

We report on efficient carrier-to-exciton conversion and planar electroluminescence from tunnel diodes based on a metal-insulator-semiconductor (MIS) van der Waals heterostack consisting of few-layer graphene (FLG), hexagonal boron nitride (hBN), and monolayer tungsten disulfide (WS2). These devices exhibit excitonic electroluminescence with extremely low threshold current density of a few pA·µm-2, which is several orders of magnitude lower compared to the previously reported values for the best planar EL devices. Using a reference dye, we estimate the EL quantum efficiency to be ∼1% at low current density limit, which is of the same order of magnitude as photoluminescence quantum yield at the equivalent excitation rate. Our observations reveal that the efficiency of our devices is not limited by carrier-to-exciton conversion efficiency but by the inherent exciton-to-photon yield of the material. The device characteristics indicate that the light emission is triggered by injection of hot minority carriers (holes) to n-doped WS2 by Fowler-Nordheim tunneling and that hBN serves as an efficient hole-transport and electron-blocking layer. Our findings offer insight into the intelligent design of van der Waals heterostructures and avenues for realizing efficient excitonic devices.

5.
Nano Lett ; 16(7): 4087-93, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27324060

RESUMO

Strongly bound excitons confined in two-dimensional (2D) semiconductors are dipoles with a perfect in-plane orientation. In a vertical stack of semiconducting 2D crystals, such in-plane excitonic dipoles are expected to efficiently couple across van der Waals gap due to strong interlayer Coulomb interaction and exchange their energy. However, previous studies on heterobilayers of group 6 transition metal dichalcogenides (TMDs) found that the exciton decay dynamics is dominated by interlayer charge transfer (CT) processes. Here, we report an experimental observation of fast interlayer energy transfer (ET) in MoSe2/WS2 heterostructures using photoluminescence excitation (PLE) spectroscopy. The temperature dependence of the transfer rates suggests that the ET is Förster-type involving excitons in the WS2 layer resonantly exciting higher-order excitons in the MoSe2 layer. The estimated ET time of the order of 1 ps is among the fastest compared to those reported for other nanostructure hybrid systems such as carbon nanotube bundles. Efficient ET in these systems offers prospects for optical amplification and energy harvesting through intelligent layer engineering.

6.
Adv Mater ; 28(14): 2709-15, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-26835879

RESUMO

Exciton-plasmon coupling in hybrids of a monolayer transition metal dichalcogenide and Ag nanoparticles is investigated in the weak and strong coupling regimes. In the weak coupling regime, both absorption enhancement and the Purcell effect collectively modify the photoluminescence properties of the semiconductor. In the strong coupling regime, electromagnetically induced transparency dips are displayed, evidencing coherent energy exchange between excitons and plasmons.

7.
Phys Chem Chem Phys ; 18(6): 4304-9, 2016 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-26790367

RESUMO

We report on the p-type doping effect of oxygen and ozone molecules on mono- and few-layer WSe2 and MoSe2 field effect transistors. We show that adsorption of oxygen and ozone under ambient conditions results in subtantial doping and corresponding enhancement in the hole conductivity of the devices. Ozone-induced doping is found to be rapid and efficient, saturating within minutes of exposure whereas oxygen-induced doping occurs over a period of days to reach the equivalent level of doping. Our observations reveal that the water adlayer on the material surface plays a crucial role in solubilizing oxygen and ozone and in forming a redox couple with a large chemical potential.

8.
Chem Soc Rev ; 44(21): 7715-36, 2015 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-26088725

RESUMO

Recent explosion of interest in two-dimensional (2D) materials research has led to extensive exploration of physical and chemical phenomena unique to this new class of materials and their technological potential. Atomically thin layers of group 6 transition metal dichalcogenides (TMDs) such as MoS2 and WSe2 are remarkably stable semiconductors that allow highly efficient electrostatic control due to their 2D nature. Field effect transistors (FETs) based on 2D TMDs are basic building blocks for novel electronic and chemical sensing applications. Here, we review the state-of-the-art of TMD-based FETs and summarize the current understanding of interface and surface effects that play a major role in these systems. We discuss how controlled doping is key to tailoring the electrical response of these materials and realizing high performance devices. The first part of this review focuses on some fundamental features of gate-modulated charge transport in 2D TMDs. We critically evaluate the role of surfaces and interfaces based on the data reported in the literature and explain the observed discrepancies between the experimental and theoretical values of carrier mobility. The second part introduces various non-covalent strategies for achieving desired doping in these systems. Gas sensors based on charge transfer doping and electrostatic stabilization are introduced to highlight progress in this direction. We conclude the review with an outlook on the realization of tailored TMD-based field-effect devices through surface and interface chemistry.

9.
Small ; 11(2): 189-94, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25179223

RESUMO

The production of large amounts of hydrogen bubbles, typical of electrochemical delamination methods based on the electrolysis of water, results in mechanical damage to graphene during the delamination, transfer, and drying steps. Here a novel 'bubble-free' delamination method is introduced which exploits the electrochemical dissolution of native copper oxide at a potential lower than that required for the formation of hydrogen bubbles, enabling the production of defect-free graphene stack.

10.
Org Lett ; 16(20): 5332-5, 2014 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-25259417

RESUMO

A novel one-pot multicomponent synthesis of α-aminocarbonyl N-acylhydrazones starting from readily available hydrazonoyl chlorides, isocyanides, and carboxylic acids is reported. The strategy exploits the ability of the carboxylic acid as a third component to suppress all competing reactions between nitrile imines and isocyanides, channeling the course of the reaction toward the formation of this novel class of compounds.

11.
Nano Lett ; 12(4): 1868-72, 2012 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-22432636

RESUMO

Polysilicon nanowire biosensors have been fabricated using a top-down process and were used to determine the binding constant of two inflammatory biomarkers. A very low cost nanofabrication process was developed, based on simple and mature photolithography, thin film technology, and plasma etching, enabling an easy route to mass manufacture. Antibody-functionalized nanowire sensors were used to detect the proteins interleukin-8 (IL-8) and tumor necrosis factor-alpha (TNF-α) over a wide range of concentrations, demonstrating excellent sensitivity and selectivity, exemplified by a detection sensitivity of 10 fM in the presence of a 100,000-fold excess of a nontarget protein. Nanowire titration curves gave antibody-antigen dissociation constants in good agreement with low-salt enzyme-linked immunosorbent assays (ELISAs). This fabrication process produces high-quality nanowires that are suitable for low-cost mass production, providing a realistic route to the realization of disposable nanoelectronic point-of-care (PoC) devices.


Assuntos
Técnicas Biossensoriais/instrumentação , Membranas Artificiais , Nanofios/química , Polímeros/química , Silício/química , Reações Antígeno-Anticorpo , Biomarcadores/análise , Cristalização , Ensaio de Imunoadsorção Enzimática , Inflamação , Interleucina-8/análise , Interleucina-8/imunologia , Polímeros/síntese química , Propriedades de Superfície , Fator de Necrose Tumoral alfa/análise , Fator de Necrose Tumoral alfa/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...