Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
AAPS J ; 25(6): 100, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891411

RESUMO

Advances in drug delivery have been accelerated with the addition of polymeric drug carriers. Direct delivery to a target site is a promising step in developing effective drug and gene therapies to treat disease. The efficacy of these drug carriers heavily relies on cell uptake without compromising critical cellular processes that promote cell viability. Drug release from biodegradable polymers is mediated largely by polymer degradation, and therefore the rate of polymer degradation dictates the feasibility of drug delivery applications. Traditionally, poly(caprolactone) (PCL) has only been used in long-term biomedical applications because the degradation time is much slower than other polymers. However, the biocompatibility of this polymer and the potential for longer delivery windows renders it a promising polymer candidate for drug delivery. In this work, we outline sixteen emulsion solvent evaporation preparation methods for PCL nanoparticles and microparticles to develop particles between 300 nm and 1.7 µm and with zeta potentials of -1.8 mV. We further investigated particles in a size range suitable for systemic tumor delivery and inhaled aerosol delivery to determine cell biocompatibility with the polymer in lung adenocarcinoma, endometrial adenocarcinoma, and human embryonic kidney cells. We determined these particles aren't detrimental to cell viability below particle monolayer coverage atop cells and therefore these formulations hold promise for the next stage of development as sustained-release drug delivery carriers.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas , Humanos , Emulsões , Poliésteres , Portadores de Fármacos , Polímeros , Tamanho da Partícula , Microesferas
2.
Small ; : e2300096, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37312613

RESUMO

Endometrial cancer is the most common gynecological malignancy worldwide and unfortunately has a much higher mortality rate in Black women compared with White women. Many potential factors contribute to these mortality rates, including the underlying effects of systemic and interpersonal racism. Furthermore, other trends in medicine have potential links to these rates including participation in clinical trials, hormone therapy, and pre-existing health conditions. Addressing the high incidence and disparate mortality rates in endometrial cancer requires novel methods, such as nanoparticle-based therapeutics. These therapeutics have been growing in increasing prevalence in pre-clinical development and have far-reaching implications in cancer therapy. The rigor of pre-clinical studies is enhanced by the likeness of the model to the human body. In systems for 3D cell culture, for example, the extracellular matrix mimics the tumor more closely. The increasing emphasis on precision medicine can be applied to cancer using nanoparticle-based methods and applied to pre-clinical models by using patient-derived model data. This review highlights the intersections of nanomedicine, precision medicine, and racial disparities within endometrial cancer and provides insights into reducing health disparities using recent scientific advances on the nanoscale.

3.
AAPS PharmSciTech ; 22(2): 69, 2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33565009

RESUMO

Encapsulating genetic material into biocompatible polymeric microparticles is a means to improving gene transfection while simultaneously decreasing the tendency for inflammatory responses; and can be advantageous in terms of delivering material directly to the lungs via aerosolization for applications such as vaccinations. In this study, we investigated the advantages of using polymeric microparticles carrying the luciferase reporter gene in increasing transfection efficiency in the readily transfectable HEK293 cell line and the difficult to transfect RAW264.7 cell line. The results indicated that there was a limit to the ratio of nitrogen in polyethylenimine (PEI) to phosphate in DNA (N/P ratio) beyond which further increases in transgene expression no longer, or only marginally, occurred. Microparticles encapsulating PEI:DNA nanoplexes induced cellular toxicity in a dose-dependent manner. PEGylation increased transgene expression, likely related to enhanced degradation of particles. Furthermore, intra-tracheal instillation in rats allowed us to investigate the inflammatory response in the lung as a function of PEGylation, porosity, and size. Porosity did not influence cell counts in bronchoalveolar lavage fluid in the absence of PEG, but in particles containing PEG, non-porous particles recruited fewer inflammatory cells than their porous counterparts. Finally, both 1 µm and 10 µm porous PLA-PEG particles recruited more neutrophils than 4 µm particles. Thus, we have shown that PEGylation and lack of porosity are advantageous for faster release of genetic cargo from microparticles and a reduced inflammatory response, respectively.


Assuntos
DNA/química , Inflamação/prevenção & controle , Lactatos/química , Polietilenoglicóis/química , Polietilenoimina/química , Transgenes , Animais , Células HEK293 , Humanos , Camundongos , Células RAW 264.7 , Ratos , Transfecção
4.
Drug Deliv Transl Res ; 11(1): 182-191, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32378175

RESUMO

PD98059 is a reversible MEK inhibitor that we are investigating as a potential treatment for neurochemical changes in the brain that drive neurohumoral excitation in heart failure. In a rat model that closely resembles human heart failure, we found that central administration of PD98059 inhibits phosphorylation of ERK1/2 in the paraventricular nucleus of the hypothalamus, ultimately reducing sympathetic excitation which is a major contributor to clinical deterioration. Studies revealed that the pharmacokinetics and biodistribution of PD98059 match a two-compartment model, with drug found in brain as well as other body tissues, but with a short elimination half-life in plasma (approximately 73 min) that would severely limit its potential clinical usefulness in heart failure. To increase its availability to tissues, we prepared a sustained release PD98059-loaded PLGA microparticle formulation, using an emulsion solvent evaporation technique. The average particle size, yield percent, and encapsulation percent were found to be 16.73 µm, 76.6%, and 43%, respectively. In vitro drug release occurred over 4 weeks, with no noticeable burst release. Following subcutaneous injection of the microparticles in rats, steady plasma levels of PD98059 were detected by HPLC for up to 2 weeks. Furthermore, plasma and brain levels of PD98059 in rats with heart failure were detectable by LC/MS, despite expected erratic absorption. These findings suggest that PD98059-loaded microparticles hold promise as a novel therapeutic intervention countering sympathetic excitation in heart failure, and perhaps in other disease processes, including cancers, in which activated MAPK signaling is a significant contributing factor. Graphical abstract.


Assuntos
Flavonoides , Quinases de Proteína Quinase Ativadas por Mitógeno , Animais , Preparações de Ação Retardada , Microesferas , Tamanho da Partícula , Ratos , Distribuição Tecidual
5.
NanoImpact ; 182020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32968700

RESUMO

Characterizations and in vitro toxicity screening were performed on metal oxide engineered nanomaterials (ENMs) independently comprising ZnO, CuO, CeO2, Fe2O3, WO3, V2O5, TiO2, Al2O3 and MgO. Nanomaterials that exhibited the highest toxicity responses in the in vitro screening assays (ZnO, CuO, and V2O5) and the lesser explored material WO3 were tested for acute pulmonary toxicity in vivo. Female and male mice (C57Bl/6J) were exposed to aerosolized metal oxide ENMs in a nose-only exposure system and toxicity outcomes (biomarkers of cytotoxicity, immunotoxicity, inflammation, and lung histopathology) at 4 and 24 h after the start of exposure were assessed. The studies were performed as part of the NIEHS Nanomaterials Health Implications Research consortium with the purpose of investigating the effects of ENMs on various biological systems. ENMs were supplied by the Engineered Nanomaterials Resource and Coordination Core. Among the ENMs studied, the highest toxicity was observed for CuO and ZnO NPs in both in vitro and in vivo acute models. Compared to sham-exposed controls, there was a significant increase in bronchoalveolar lavage neutrophils and proinflammatory cytokines and a loss of macrophage viability at both 4 h and 24 h for ZnO and CuO but not seen for V2O5 or WO3. These effects were observed in both female and male mice. The cell viability performed after in vitro exposure to ENMs and assessment of lung inflammation after acute inhalation exposure in vivo were shown to be sensitive endpoints to predict ENM acute toxicity.

6.
Mol Pharm ; 17(9): 3643-3648, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32786958

RESUMO

Sympathetic excitation contributes to clinical deterioration in systolic heart failure (HF). Significant inhibition of hypothalamic paraventricular nucleus (PVN) ERK1/2 signaling and a subsequent reduction of plasma norepinephrine (NE) levels in HF rats were achieved 2 weeks after a single subcutaneous injection of PD98059-loaded polymeric microparticles, without apparent adverse events, while blank microparticles had no effect. Similar reductions in plasma NE, a general indicator of sympathetic excitation, were previously achieved in HF rats by intracerebroventricular infusion of PD98059 or genetic knockdown of PVN ERK1/2 expression. This study presents a clinically feasible therapeutic approach to the central abnormalities contributing to HF progression.


Assuntos
Insuficiência Cardíaca/tratamento farmacológico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Preparações Farmacêuticas/administração & dosagem , Animais , Química Farmacêutica/métodos , Modelos Animais de Doenças , Norepinefrina/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos
7.
Colloids Surf B Biointerfaces ; 179: 374-381, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30999116

RESUMO

Protein-nanoparticle interactions are garnering attention due to their potential impacts on human health and environmental contamination. The colloidal properties of nanoparticles (NPs) in aqueous media may differ in the presence of natural materials such as salts and proteins. In this study, the interactions between bovine serum albumin (BSA) and fumed hydrophilic silicon dioxide (SiO2) NPs were studied in aqueous solutions under variable pH or ion composition. Investigation of hydrodynamic diameter and zeta potential changes to nanoparticles upon addition of BSA, the adsorption of BSA to the SiO2 NP surface, and the interaction energy between particles revealed that buffered solutions promote protein adsorption onto NPs and particle agglomeration. The effects of ionic salt solutions were dependent on the ion charge, with negatively charged ions stabilizing the system and positively charged ions promoting protein-nanoparticle interactions. These data highlight that physiologically relevant salts affect protein corona formation on non-toxic, amorphous SiO2 NPs and spur the need for well-defined characterization conditions when determining potential toxicity of NPs upon human or animal exposure.


Assuntos
Nanopartículas/química , Coroa de Proteína/química , Sais/química , Soroalbumina Bovina/química , Dióxido de Silício/química , Água/química , Adsorção , Animais , Bovinos , Coloides/química , Hidrodinâmica , Concentração de Íons de Hidrogênio , Nanopartículas/ultraestrutura , Soluções , Eletricidade Estática , Termogravimetria
8.
AAPS PharmSciTech ; 20(1): 23, 2019 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-30604270

RESUMO

Direct pulmonary delivery is a promising step in developing effective gene therapies for respiratory disease. Gene therapies can be used to treat the root cause of diseases, rather than just the symptoms. However, developing effective therapies that do not cause toxicity and that successfully reach the target site at therapeutic levels is challenging. We have developed a polymer-DNA complex utilizing polyethylene imine (PEI) and DNA, which was then encapsulated into poly(lactic acid)-co-monomethoxy poly(ethylene glycol) (PLA-mPEG) microparticles via double emulsion, solvent evaporation. Then, the resultant particle size, porosity, and encapsulation efficiency were measured as a function of altering preparation parameters. Microsphere formation was confirmed from scanning electron micrographs and the aerodynamic particle diameter was measured using an aerodynamic particle sizer. Several formulations produced particles with aerodynamic diameters in the 0-5 µm range despite having larger particle diameters which is indicative of porous particles. Furthermore, these aerodynamic diameters correspond to high deposition within the airways when inhaled and the measured DNA content indicated high encapsulation efficiency. Thus, this formulation provides promise for developing inhalable gene therapies.


Assuntos
DNA/farmacocinética , Microesferas , Tamanho da Partícula , Poliésteres/farmacocinética , Polietilenoglicóis/farmacocinética , Polietilenoimina/farmacocinética , DNA/química , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Portadores de Fármacos , Poliésteres/química , Polietilenoglicóis/química , Polietilenoimina/química , Porosidade
9.
AAPS J ; 20(6): 108, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30306365

RESUMO

The recent progress in harnessing the efficient and precise method of DNA editing provided by CRISPR/Cas9 is one of the most promising major advances in the field of gene therapy. However, the development of safe and optimally efficient delivery systems for CRISPR/Cas9 elements capable of achieving specific targeting of gene therapy to the location of interest without off-target effects is a primary challenge for clinical therapeutics. Nanoparticles (NPs) provide a promising means to meet such challenges. In this review, we present the most recent advances in developing innovative NP-based delivery systems that efficiently deliver CRISPR/Cas9 constructs and maximize their effectiveness.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Técnicas de Transferência de Genes , Terapia Genética/métodos , Nanopartículas/química , DNA/genética , Humanos
10.
Immunotherapy ; 10(7): 595-604, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29569508

RESUMO

Allergic asthma is becoming increasingly prevalent in the developed world, and many common allergens are capable of inducing allergic asthma responses, particularly in atopic individuals. Unmethylated CpG-oligonucleotide (ODN) therapy can shift the immune response to mitigate these allergic responses. Therapeutic and prophylactic delivery of soluble CpG-ODN in preclinical studies has shown promise in treating existing asthma and preventing allergic responses upon subsequent allergen exposure, respectively. However, when CpG-ODN is coupled with nanoparticles or self assembled into nanostructures, improved efficacy of CpG-ODN treatment for several common allergens is observed in preclinical studies and clinical trials. Here we discuss the role of CpG-ODN in treating allergic asthma and how nanoparticle-based delivery can further enhance its therapeutic properties.


Assuntos
Asma/terapia , Hipersensibilidade/terapia , Nanopartículas/uso terapêutico , Oligodesoxirribonucleotídeos/genética , Células Th1/imunologia , Células Th2/imunologia , Animais , Asma/genética , Ensaios Clínicos como Assunto , Citocinas/genética , Citocinas/metabolismo , Avaliação Pré-Clínica de Medicamentos , Humanos , Hipersensibilidade/genética , Hipersensibilidade Imediata , Oligodesoxirribonucleotídeos/uso terapêutico
11.
ACS Appl Bio Mater ; 1(5): 1254-1265, 2018 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34996229

RESUMO

The mechanical properties of submicron particles offer a unique design space for advanced drug-delivery particle engineering. However, the recognition of this potential is limited by a poor consensus about both the specificity and sensitivity of mechanosensitive endocytosis over a broad particle stiffness range. In this report, our model series of polystyrene-co-poly(N-isopropylacrylamide) (pS-co-NIPAM) microgels have been prepared with a nominally constant monomer composition (50 mol % styrene and 50 mol % NIPAM) with varied bis-acrylamide cross-linking densities to introduce a tuned spectrum of particle mechanics without significant variation in particle size and surface charge. While previous mechanosensitive studies use particles with moduli ranging from 15 kPa to 20 MPa, the pS-co-NIPAM particles have Young's moduli (E) ranging from 300 to 700 MPa, which is drastically stiffer than these previous studies as well as pure pNIPAM. Despite this elevated stiffness, particle uptake in RAW264.7 murine macrophages displays a clear stiffness dependence, with a significant increase in particle uptake for our softest microgels after a 4 h incubation. Preferential uptake of the softest microgel, pS-co-NIPAM-1 (E = 310 kPa), was similarly observed with nonphagocytic HepG2 hepatoma cells; however, the uptake kinetics were distinct relative to that observed for RAW264.7 cells. Pharmacological inhibitors, used to probe for specific routes of particle internalization, identify actin- and microtubule-dependent pathways in RAW264.7 cells as sensitive particle mechanics. For our pS-co-NIPAM particles at nominally 300-400 nm in size, this microtubule-dependent pathway was interpreted as a phagocytic route. For our high-stiffness microgel series, this study provides evidence of cell-specific, mechanosensitive endocytosis in a distinctly new stiffness regime that will further broaden the functional landscape of mechanics as a design space for particle engineering.

12.
Biointerphases ; 12(2): 02D404, 2017 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-28468503

RESUMO

Bovine serum albumin (BSA) adsorbed on amorphous silicon dioxide (SiO2) nanoparticles was studied as a function of pH across the range of 2 to 8. Aggregation, surface charge, surface coverage, and protein structure were investigated over this entire pH range. SiO2 nanoparticle aggregation is found to depend upon pH and differs in the presence of adsorbed BSA. For SiO2 nanoparticles truncated with hydroxyl groups, the largest aggregates were observed at pH 3, close to the isoelectric point of SiO2 nanoparticles, whereas for SiO2 nanoparticles with adsorbed BSA, the aggregate size was the greatest at pH 3.7, close to the isoelectric point of the BSA-SiO2 complex. Surface coverage of BSA was also the greatest at the isoelectric point of the BSA-SiO2 complex with a value of ca. 3 ± 1 × 1011 molecules cm-2. Furthermore, the secondary protein structure was modified when compared to the solution phase at all pH values, but the most significant differences were seen at pH 7.4 and below. It is concluded that protein-nanoparticle interactions vary with solution pH, which may have implications for nanoparticles in different biological fluids (e.g., blood, stomach, and lungs).


Assuntos
Nanopartículas/química , Soroalbumina Bovina/química , Dióxido de Silício/química , Animais , Bovinos , Concentração de Íons de Hidrogênio
13.
J Colloid Interface Sci ; 493: 334-341, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28119244

RESUMO

The interaction of a model protein, bovine serum albumin (BSA) with two different metal oxide nanoparticles, TiO2 (∼22nm) and SiO2 (∼14nm), was studied at both physiological and acidic pH. The pH- and nanoparticle-dependent differences in protein structure and protein adsorption were determined using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and thermogravimetric analysis (TGA). The results indicated that the surface coverage of BSA decreases with decreasing pH on both TiO2 and SiO2 surfaces, and BSA coverage is higher by a factor of ca. 3-10times more on TiO2 compared to SiO2. The secondary structure of BSA changes upon adsorption to either nanoparticle surface at both pH 7.4 and 2. At acidic pH, BSA appears to completely unfold on TiO2 nanoparticles whereas it assumes an extended conformation on SiO2. These differences highlight for the first time the extent to which the protein corona structure is significantly impacted by protein-nanoparticle interactions which depend on the interplay between pH and specific nanoparticle surface chemistry.


Assuntos
Nanopartículas/química , Soroalbumina Bovina/química , Dióxido de Silício/química , Titânio/química , Adsorção , Animais , Bovinos , Concentração de Íons de Hidrogênio , Conformação Proteica , Desdobramento de Proteína , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...