Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
1.
Clin J Sport Med ; 34(1): 30-37, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37432349

RESUMO

OBJECTIVE: To determine whether alcohol use leads to prolonged clinical recovery or increased severity of concussion symptoms in National Collegiate Athletic Association (NCAA) athletes. DESIGN: Prospective observational study. SETTING: Clinical institutions. PARTICIPANTS: Athletes from the NCAA Concussion Assessment Research and Education consortium who sustained a concussion from 2014 to 2021. INTERVENTIONS: Athletes were divided into 2 groups, those reporting alcohol use postinjury and those reporting no alcohol use postinjury. MAIN OUTCOME MEASURES: Symptom recovery was evaluated as time (in days) from injury to clearance to return to unrestricted play (days until URTP). Severity of concussion symptoms was assessed using the Standardized Sport Concussion Assessment Tool (SCAT3) symptom severity, headache severity, difficulty concentrating, and difficulty remembering scores. These scores were taken a median of 6.6 [interquartile range (IQR) = 4.0-10] and 6 (IQR = 4.0-9.0) days after injury for those who did and did not consume alcohol postinjury respectively and compared with baseline SCAT3 scores. RESULTS: Four hundred eighty four athletes from the data set had complete data for exposure and outcome. The adjusted mean number of days until URTP for athletes reporting alcohol use postinjury [23.3; 95% confidence interval (CI), 20.0-27.2; days] was incidence rate ratio (IRR) 1.32 (95% CI, 1.12-1.55; P < 0.001) times higher than for athletes who reported no alcohol use postinjury [17.7 (95% CI, 16.1-19.3) days]. Postinjury alcohol was not associated with severity of concussion symptoms ( P 's < 0.05). CONCLUSION: Self-reported postinjury alcohol use is associated with prolonged recovery but not severity of concussion symptoms in collegiate athletes. This may inform future clinical recommendations regarding alcohol consumption after concussion.


Assuntos
Traumatismos em Atletas , Concussão Encefálica , Esportes , Humanos , Traumatismos em Atletas/epidemiologia , Concussão Encefálica/diagnóstico , Concussão Encefálica/etiologia , Atletas , Consumo de Bebidas Alcoólicas , Testes Neuropsicológicos
2.
J Neurotrauma ; 41(1-2): 171-185, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37463061

RESUMO

Treatment of youth concussion during the acute phase continues to evolve, and this has led to the emergence of guidelines to direct care. While symptoms after concussion typically resolve in 14-28 days, a portion (∼20%) of adolescents endorse persistent post-concussive symptoms (PPCS) beyond normal resolution. This report outlines a study implemented in response to the National Institute of Neurological Diseases and Stroke call for the development and initial clinical validation of objective biological measures to predict risk of PPCS in adolescents. We describe our plans for recruitment of a Development cohort of 11- to 17-year-old youth with concussion, and collection of autonomic, neurocognitive, biofluid, and imaging biomarkers. The most promising of these measures will then be validated in a separate Validation cohort of youth with concussion, and a final, clinically useful algorithm will be developed and disseminated. Upon completion of this study, we will have generated a battery of measures predictive of high risk for PPCS, which will allow for identification and testing of interventions to prevent PPCS in the most high-risk youth.


Assuntos
Concussão Encefálica , Síndrome Pós-Concussão , Humanos , Adolescente , Criança , Síndrome Pós-Concussão/diagnóstico , Endofenótipos , Concussão Encefálica/psicologia
3.
Pediatrics ; 153(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38044802

RESUMO

The 6th International Consensus Conference on Concussion in Sport, Amsterdam 2022, addressed sport-related concussion (SRC) in adults, adolescents, and children. We highlight the updated evidence-base and recommendations regarding SRC in children (5-12 years) and adolescents (13-18 years). Prevention strategies demonstrate lower SRC rates with mouthguard use, policy disallowing bodychecking in ice hockey, and neuromuscular training in adolescent rugby. The Sport Concussion Assessment Tools (SCAT) demonstrate robustness with the parent and child symptom scales, with the best diagnostic discrimination within the first 72 hours postinjury. Subacute evaluation (>72 hours) requires a multimodal tool incorporating symptom scales, balance measures, cognitive, oculomotor and vestibular, mental health, and sleep assessment, to which end the Sport Concussion Office Assessment Tools (SCOAT6 [13+] and Child SCOAT6 [8-12]) were developed. Rather than strict rest, early return to light physical activity and reduced screen time facilitate recovery. Cervicovestibular rehabilitation is recommended for adolescents with dizziness, neck pain, and/or headaches for greater than 10 days. Active rehabilitation and collaborative care for adolescents with persisting symptoms for more than 30 days may decrease symptoms. No tests and measures other than standardized and validated symptom rating scales are valid for diagnosing persisting symptoms after concussion. Fluid and imaging biomarkers currently have limited clinical utility in diagnosing or assessing recovery from SRC. Improved paradigms for return to school were developed. The variable nature of disability and differences in evaluating para athletes and those of diverse ethnicity, sex, and gender are discussed, as are ethical considerations and future directions in pediatric SRC research.


Assuntos
Traumatismos em Atletas , Concussão Encefálica , Esportes , Adulto , Adolescente , Humanos , Criança , Traumatismos em Atletas/diagnóstico , Concussão Encefálica/diagnóstico , Concussão Encefálica/terapia , Exercício Físico , Previsões
4.
JAMA Netw Open ; 6(11): e2343410, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37966838

RESUMO

Importance: Traumatic brain injury (TBI) is known to cause widespread neural disruption in the cerebrum. However, less is known about the association of TBI with cerebellar structure and how such changes may alter executive functioning. Objective: To investigate alterations in subregional cerebellum volume and cerebral white matter microstructure after pediatric TBI and examine subsequent changes in executive function. Design, Setting, and Participants: This retrospective cohort study combined 12 data sets (collected between 2006 and 2020) from 9 sites in the Enhancing Neuroimaging Genetics Through Meta-Analysis Consortium Pediatric TBI working group in a mega-analysis of cerebellar structure. Participants with TBI or healthy controls (some with orthopedic injury) were recruited from trauma centers, clinics, and institutional trauma registries, some of which were followed longitudinally over a period of 0.7 to 1.9 years. Healthy controls were recruited from the surrounding community. Data analysis occurred from October to December 2022. Exposure: Accidental mild complicated-severe TBI (msTBI) for those in the TBI group. Some controls received a diagnosis of orthopedic injury. Main Outcomes and Measures: Volume of 18 cerebellar lobules and vermal regions were estimated from 3-dimensional T1-weighted magnetic resonance imaging (MRI) scans. White matter organization in 28 regions of interest was assessed with diffusion tensor MRI. Executive function was measured by parent-reported scores from the Behavior Rating Inventory of Executive Functioning. Results: A total of 598 children and adolescents (mean [SD] age, 14.05 [3.06] years; range, 5.45-19.70 years; 386 male participants [64.5%]; 212 female participants [35.5%]) were included in the study, with 314 participants in the msTBI group, and 284 participants in the non-TBI group (133 healthy individuals and 151 orthopedically injured individuals). Significantly smaller total cerebellum volume (d = -0.37; 95% CI, -0.52 to -0.22; P < .001) and subregional cerebellum volumes (eg, corpus medullare; d = -0.43; 95% CI, -0.58 to -0.28; P < .001) were observed in the msTBI group. These alterations were primarily seen in participants in the chronic phase (ie, >6 months postinjury) of injury (total cerebellar volume, d = -0.55; 95% CI, -0.75 to -0.35; P < .001). Smaller cerebellum volumes were associated with higher scores on the Behavior Rating Inventory of Executive Functioning Global Executive Composite score (ß = -208.9 mm3; 95% CI, -319.0 to -98.0 mm3; P = .008) and Metacognition Index score (ß = -202.5 mm3; 95% CI, -319.0 to -85.0 mm3; P = .02). In a subset of 185 participants with longitudinal data, younger msTBI participants exhibited cerebellum volume reductions (ß = 0.0052 mm3; 95% CI, 0.0013 to 0.0090 mm3; P = .01), and older participants slower growth rates. Poorer white matter organization in the first months postinjury was associated with decreases in cerebellum volume over time (ß=0.52 mm3; 95% CI, 0.19 to 0.84 mm3; P = .005). Conclusions and Relevance: In this cohort study of pediatric msTBI, our results demonstrated robust cerebellar volume alterations associated with pediatric TBI, localized to the posterior lobe. Furthermore, longitudinal cerebellum changes were associated with baseline diffusion tensor MRI metrics, suggesting secondary cerebellar atrophy. These results provide further understanding of secondary injury mechanisms and may point to new opportunities for intervention.


Assuntos
Concussão Encefálica , Lesões Encefálicas Traumáticas , Adolescente , Humanos , Criança , Feminino , Masculino , Estudos de Coortes , Estudos Retrospectivos , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Cerebelo/diagnóstico por imagem , Atrofia
5.
Front Neurol ; 14: 1202967, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37662031

RESUMO

Objective: The aim of this study was to investigate phosphorylated tau (p-tau181) protein in plasma in a cohort of mild traumatic brain injury (mTBI) patients and a cohort of concussed athletes. Methods: This pilot study comprised two independent cohorts. The first cohort-part of a Traumatic Head Injury Neuroimaging Classification (THINC) study-with a mean age of 46 years was composed of uninjured controls (UIC, n = 30) and mTBI patients (n = 288) recruited from the emergency department with clinical computed tomography (CT) and research magnetic resonance imaging (MRI) findings. The second cohort-with a mean age of 19 years-comprised 133 collegiate athletes with (n = 112) and without (n = 21) concussions. The participants enrolled in the second cohort were a part of a multicenter, prospective, case-control study conducted by the NCAA-DoD Concussion Assessment, Research and Education (CARE) Consortium at six CARE Advanced Research Core (ARC) sites between 2015 and 2019. Blood was collected within 48 h of injury for both cohorts. Plasma concentration (pg/ml) of p-tau181 was measured using the Single Molecule Array ultrasensitive assay. Results: Concentrations of plasma p-tau181 in both cohorts were significantly elevated compared to controls within 48 h of injury, with the highest concentrations of p-tau181 within 18 h of injury, with an area under the curve (AUC) of 0.690-0.748, respectively, in distinguishing mTBI patients and concussed athletes from controls. Among the mTBI patients, the levels of plasma p-tau181 were significantly higher in patients with positive neuroimaging (either CT+/MRI+, n = 74 or CT-/MRI+, n = 89) compared to mTBI patients with negative neuroimaging (CT-/MRI-, n = 111) findings and UIC (P-values < 0.05). Conclusion: These findings indicate that plasma p-tau181 concentrations likely relate to brain injury, with the highest levels in patients with neuroimaging evidence of injury. Future research is needed to replicate and validate this protein assay's performance as a possible early diagnostic biomarker for mTBI/concussions.

6.
Front Neurol ; 14: 1239653, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37638180

RESUMO

Tau is a protein that has received national mainstream recognition for its potential negative impact to the brain. This review succinctly provides information on the structure of tau and its normal physiological functions, including in hibernation and changes throughout the estrus cycle. There are many pathways involved in phosphorylating tau including diabetes, stroke, Alzheimer's disease (AD), brain injury, aging, and drug use. The common mechanisms for these processes are put into context with changes observed in mild and repetitive mild traumatic brain injury (TBI). The phosphorylation of tau is a part of the progression to pathology, but the ability for tau to aggregate and propagate is also addressed. Summarizing both the functional and dysfunctional roles of tau can help advance our understanding of this complex protein, improve our care for individuals with a history of TBI, and lead to development of therapeutic interventions to prevent or reverse tau-mediated neurodegeneration.

7.
Neurology ; 101(2): e189-e201, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37328299

RESUMO

BACKGROUND AND OBJECTIVES: To study longitudinal associations between blood-based neural biomarkers (including total tau, neurofilament light [NfL], glial fibrillary acidic protein [GFAP], and ubiquitin C-terminal hydrolase-L1) and white matter neuroimaging biomarkers in collegiate athletes with sport-related concussion (SRC) from 24 hours postinjury to 1 week after return to play. METHODS: We analyzed clinical and imaging data of concussed collegiate athletes in the Concussion Assessment, Research, and Education (CARE) Consortium. The CARE participants completed same-day clinical assessments, blood draws, and diffusion tensor imaging (DTI) at 3 time points: 24-48 hours postinjury, point of becoming asymptomatic, and 7 days after return to play. DTI probabilistic tractography was performed for each participant at each time point to render 27 participant-specific major white matter tracts. The microstructural organization of these tracts was characterized by 4 DTI metrics. Mixed-effects models with random intercepts were applied to test whether white matter microstructural abnormalities are associated with the blood-based biomarkers at the same time point. An interaction model was used to test whether the association varies across time points. A lagged model was used to test whether early blood-based biomarkers predict later microstructural changes. RESULTS: Data from 77 collegiate athletes were included in the following analyses. Among the 4 blood-based biomarkers, total tau had significant associations with the DTI metrics across the 3 time points. In particular, high tau level was associated with high radial diffusivity (RD) in the right corticospinal tract (ß = 0.25, SE = 0.07, p FDR-adjusted = 0.016) and superior thalamic radiation (ß = 0.21, SE = 0.07, p FDR-adjusted = 0.042). NfL and GFAP had time-dependent associations with the DTI metrics. NfL showed significant associations only at the asymptomatic time point (|ß|s > 0.12, SEs <0.09, psFDR-adjusted < 0.05) and GFAP showed a significant association only at 7 days after return to play (ßs > 0.14, SEs <0.06, psFDR-adjusted < 0.05). The p values for the associations of early tau and later RD were not significant after multiple comparison adjustment, but were less than 0.1 in 7 white matter tracts. DISCUSSION: This prospective study using data from the CARE Consortium demonstrated that in the early phase of SRC, white matter microstructural integrity detected by DTI neuroimaging was associated with elevated levels of blood-based biomarkers of traumatic brain injury. Total tau in the blood showed the strongest association with white matter microstructural changes.


Assuntos
Traumatismos em Atletas , Concussão Encefálica , Futebol Americano , Substância Branca , Humanos , Substância Branca/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Traumatismos em Atletas/diagnóstico por imagem , Estudos Prospectivos , Concussão Encefálica/diagnóstico por imagem , Futebol Americano/lesões , Biomarcadores
8.
Br J Sports Med ; 57(12): 762-770, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37316185

RESUMO

OBJECTIVE: To synthesise the evidence regarding the risks and benefits of physical activity (PA), prescribed aerobic exercise treatment, rest, cognitive activity and sleep during the first 14 days after sport-related concussion (SRC). DESIGN: Meta-analysis was performed for PA/prescribed exercise interventions and a narrative synthesis for rest, cognitive activity and sleep. Risk of bias (ROB) was determined using the Scottish Intercollegiate Guidelines Network and quality assessed using Grading of Recommendations, Assessment, Development and Evaluations. DATA SOURCES: MEDLINE, Embase, APA PsycInfo, Cochrane Central Register of Controlled Trials, CINAHL Plus and SPORTDiscus. Searches were conducted in October 2019 and updated in March 2022. ELIGIBILITY CRITERIA: Original research articles with sport-related mechanism of injury in >50% of study sample and that evaluated how PA, prescribed exercise, rest, cognitive activity and/or sleep impact recovery following SRC. Reviews, conference proceedings, commentaries, editorials, case series, animal studies and articles published before 1 January 2001 were excluded. RESULTS: 46 studies were included and 34 had acceptable/low ROB. Prescribed exercise was assessed in 21 studies, PA in 15 studies (6 PA/exercise studies also assessed cognitive activity), 2 assessed cognitive activity only and 9 assessed sleep. In a meta-analysis of seven studies, PA and prescribed exercise improved recovery by a mean of -4.64 days (95% CI -6.69, -2.59). After SRC, early return to light PA (initial 2 days), prescribed aerobic exercise treatment (days 2-14) and reduced screen use (initial 2 days) safely facilitate recovery. Early prescribed aerobic exercise also reduces delayed recovery, and sleep disturbance is associated with slower recovery. CONCLUSION: Early PA, prescribed aerobic exercise and reduced screen time are beneficial following SRC. Strict physical rest until symptom resolution is not effective, and sleep disturbance impairs recovery after SRC. PROSPERO REGISTRATION NUMBER: CRD42020158928.


Assuntos
Concussão Encefálica , Esportes , Animais , Exercício Físico , Descanso , Concussão Encefálica/terapia , Sono
9.
Br J Sports Med ; 57(12): 780-788, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37316186

RESUMO

OBJECTIVE: To determine what tests and measures accurately diagnose persisting post-concussive symptoms (PPCS) in children, adolescents and adults following sport-related concussion (SRC). DESIGN: A systematic literature review. DATA SOURCES: MEDLINE, Embase, PsycINFO, Cochrane Central Register of Controlled Trials, CINAHL and SPORTDiscus through March 2022. ELIGIBILITY CRITERIA: Original, empirical, peer-reviewed findings (cohort studies, case-control studies, cross-sectional studies and case series) published in English and focused on SRC. Studies needed to compare individuals with PPCS to a comparison group or their own baseline prior to concussion, on tests or measures potentially affected by concussion or associated with PPCS. RESULTS: Of 3298 records screened, 26 articles were included in the qualitative synthesis, including 1016 participants with concussion and 531 in comparison groups; 7 studies involved adults, 8 involved children and adolescents and 11 spanned both age groups. No studies focused on diagnostic accuracy. Studies were heterogeneous in participant characteristics, definitions of concussion and PPCS, timing of assessment and the tests and measures examined. Some studies found differences between individuals with PPCS and comparison groups or their own pre-injury assessments, but definitive conclusions were not possible because most studies had small convenience samples, cross-sectional designs and were rated high risk of bias. CONCLUSION: The diagnosis of PPCS continues to rely on symptom report, preferably using standardised symptom rating scales. The existing research does not indicate that any other specific tool or measure has satisfactory accuracy for clinical diagnosis. Future research drawing on prospective, longitudinal cohort studies could help inform clinical practice.


Assuntos
Concussão Encefálica , Síndrome Pós-Concussão , Humanos , Adolescente , Adulto , Criança , Síndrome Pós-Concussão/diagnóstico , Estudos Transversais , Estudos Longitudinais , Estudos Prospectivos , Concussão Encefálica/diagnóstico
15.
Br J Sports Med ; 57(11): 695-711, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37316210

RESUMO

For over two decades, the Concussion in Sport Group has held meetings and developed five international statements on concussion in sport. This 6th statement summarises the processes and outcomes of the 6th International Conference on Concussion in Sport held in Amsterdam on 27-30 October 2022 and should be read in conjunction with the (1) methodology paper that outlines the consensus process in detail and (2) 10 systematic reviews that informed the conference outcomes. Over 3½ years, author groups conducted systematic reviews of predetermined priority topics relevant to concussion in sport. The format of the conference, expert panel meetings and workshops to revise or develop new clinical assessment tools, as described in the methodology paper, evolved from previous consensus meetings with several new components. Apart from this consensus statement, the conference process yielded revised tools including the Concussion Recognition Tool-6 (CRT6) and Sport Concussion Assessment Tool-6 (SCAT6, Child SCAT6), as well as a new tool, the Sport Concussion Office Assessment Tool-6 (SCOAT6, Child SCOAT6). This consensus process also integrated new features including a focus on the para athlete, the athlete's perspective, concussion-specific medical ethics and matters related to both athlete retirement and the potential long-term effects of SRC, including neurodegenerative disease. This statement summarises evidence-informed principles of concussion prevention, assessment and management, and emphasises those areas requiring more research.


Assuntos
Atletas , Concussão Encefálica , Esportes , Humanos
17.
Br J Sports Med ; 57(11): 722-735, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37316213

RESUMO

OBJECTIVES: To systematically review the scientific literature regarding the acute assessment of sport-related concussion (SRC) and provide recommendations for improving the Sport Concussion Assessment Tool (SCAT6). DATA SOURCES: Systematic searches of seven databases from 2001 to 2022 using key words and controlled vocabulary relevant to concussion, sports, SCAT, and acute evaluation. ELIGIBILITY CRITERIA: (1) Original research articles, cohort studies, case-control studies, and case series with a sample of >10; (2) ≥80% SRC; and (3) studies using a screening tool/technology to assess SRC acutely (<7 days), and/or studies containing psychometric/normative data for common tools used to assess SRC. DATA EXTRACTION: Separate reviews were conducted involving six subdomains: Cognition, Balance/Postural Stability, Oculomotor/Cervical/Vestibular, Emerging Technologies, and Neurological Examination/Autonomic Dysfunction. Paediatric/Child studies were included in each subdomain. Risk of Bias and study quality were rated by coauthors using a modified SIGN (Scottish Intercollegiate Guidelines Network) tool. RESULTS: Out of 12 192 articles screened, 612 were included (189 normative data and 423 SRC assessment studies). Of these, 183 focused on cognition, 126 balance/postural stability, 76 oculomotor/cervical/vestibular, 142 emerging technologies, 13 neurological examination/autonomic dysfunction, and 23 paediatric/child SCAT. The SCAT discriminates between concussed and non-concussed athletes within 72 hours of injury with diminishing utility up to 7 days post injury. Ceiling effects were apparent on the 5-word list learning and concentration subtests. More challenging tests, including the 10-word list, were recommended. Test-retest data revealed limitations in temporal stability. Studies primarily originated in North America with scant data on children. CONCLUSION: Support exists for using the SCAT within the acute phase of injury. Maximal utility occurs within the first 72 hours and then diminishes up to 7 days after injury. The SCAT has limited utility as a return to play tool beyond 7 days. Empirical data are limited in pre-adolescents, women, sport type, geographical and culturally diverse populations and para athletes. PROSPERO REGISTRATION NUMBER: CRD42020154787.


Assuntos
Concussão Encefálica , Esportes , Criança , Humanos , Adolescente , Adulto , Feminino , Concussão Encefálica/diagnóstico , Atletas , Estudos de Casos e Controles , Cognição
18.
Arch Phys Med Rehabil ; 104(8): 1343-1355, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37211140

RESUMO

OBJECTIVE: To develop new diagnostic criteria for mild traumatic brain injury (TBI) that are appropriate for use across the lifespan and in sports, civilian trauma, and military settings. DESIGN: Rapid evidence reviews on 12 clinical questions and Delphi method for expert consensus. PARTICIPANTS: The Mild Traumatic Brain Injury Task Force of the American Congress of Rehabilitation Medicine Brain Injury Special Interest Group convened a Working Group of 17 members and an external interdisciplinary expert panel of 32 clinician-scientists. Public stakeholder feedback was analyzed from 68 individuals and 23 organizations. RESULTS: The first 2 Delphi votes asked the expert panel to rate their agreement with both the diagnostic criteria for mild TBI and the supporting evidence statements. In the first round, 10 of 12 evidence statements reached consensus agreement. Revised evidence statements underwent a second round of expert panel voting, where consensus was achieved for all. For the diagnostic criteria, the final agreement rate, after the third vote, was 90.7%. Public stakeholder feedback was incorporated into the diagnostic criteria revision prior to the third expert panel vote. A terminology question was added to the third round of Delphi voting, where 30 of 32 (93.8%) expert panel members agreed that 'the diagnostic label 'concussion' may be used interchangeably with 'mild TBI' when neuroimaging is normal or not clinically indicated.' CONCLUSIONS: New diagnostic criteria for mild TBI were developed through an evidence review and expert consensus process. Having unified diagnostic criteria for mild TBI can improve the quality and consistency of mild TBI research and clinical care.


Assuntos
Concussão Encefálica , Lesões Encefálicas , Militares , Humanos , Estados Unidos , Concussão Encefálica/diagnóstico , Lesões Encefálicas/reabilitação , Consenso , Técnica Delphi
19.
J Clin Neurophysiol ; 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36930237

RESUMO

PURPOSE: In 2011, the authors conducted a survey regarding continuous EEG (CEEG) utilization in critically ill children. In the interim decade, the literature has expanded, and guidelines and consensus statements have addressed CEEG utilization. Thus, the authors aimed to characterize current practice related to CEEG utilization in critically ill children. METHODS: The authors conducted an online survey of pediatric neurologists from 50 US and 12 Canadian institutions in 2022. RESULTS: The authors assessed responses from 48 of 62 (77%) surveyed institutions. Reported CEEG indications were consistent with consensus statement recommendations and included altered mental status after a seizure or status epilepticus, altered mental status of unknown etiology, or altered mental status with an acute primary neurological condition. Since the prior survey, there was a 3- to 4-fold increase in the number of patients undergoing CEEG per month and greater use of written pathways for ICU CEEG. However, variability in resources and workflow persisted, particularly regarding technologist availability, frequency of CEEG screening, communication approaches, and electrographic seizure management approaches. CONCLUSIONS: Among the surveyed institutions, which included primarily large academic centers, CEEG use in pediatric intensive care units has increased with some practice standardization, but variability in resources and workflow were persistent.

20.
bioRxiv ; 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-36712107

RESUMO

Investigators in neuroscience have turned to Big Data to address replication and reliability issues by increasing sample sizes, statistical power, and representativeness of data. These efforts unveil new questions about integrating data arising from distinct sources and instruments. We focus on the most frequently assessed cognitive domain - memory testing - and demonstrate a process for reliable data harmonization across three common measures. We aggregated global raw data from 53 studies totaling N = 10,505 individuals. A mega-analysis was conducted using empirical bayes harmonization to remove site effects, followed by linear models adjusting for common covariates. A continuous item response theory (IRT) model estimated each individual's latent verbal learning ability while accounting for item difficulties. Harmonization significantly reduced inter-site variance while preserving covariate effects, and our conversion tool is freely available online. This demonstrates that large-scale data sharing and harmonization initiatives can address reproducibility and integration challenges across the behavioral sciences.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...