Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 19(6): 4010-4016, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31046293

RESUMO

In the past decade, the spin-orbit interaction (SOI) of light has been a driving force in the design of metamaterials, metasurfaces, and schemes for light-matter interaction. A hallmark of the spin-orbit interaction of light is the spin-based plasmonic effect, converting spin angular momentum of propagating light to near-field orbital angular momentum. Although this effect has been thoroughly investigated in circular symmetry, it has yet to be characterized in a noncircular geometry, where whirling, periodic plasmonic fields are expected. Using phase-resolved near-field microscopy, we experimentally demonstrate the SOI of circularly polarized light in nanostructures possessing dihedral symmetry. We show how interaction with hexagonal slits results in four topologically different plasmonic lattices, controlled by engineered boundary conditions, and reveal a cyclic nature of the spin-based plasmonic effect which does not exist for circular symmetry. Finally, we calculate the optical forces generated by the plasmonic lattices, predicting that light with mere spin angular momentum can exert torque on a multitude of particles in an ordered fashion to form an optical nanomotor array. Our findings may be of use in both biology and chemistry, as a means for simultaneous trapping, manipulation, and excitation of multiple objects, controlled by the polarization of light.

2.
Opt Lett ; 41(15): 3455-8, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27472592

RESUMO

Structured illumination microscopy utilizes illumination of periodic light patterns to allow reconstruction of high spatial frequencies, conventionally doubling the microscope's resolving power. This Letter presents a structured illumination microscopy scheme with the ability to achieve 60 nm resolution by using total internal reflection of a double moiré pattern in high-index materials. We propose a realization that provides dynamic control over relative amplitudes and phases of four coherently interfering beams in gallium phosphide and numerically demonstrate its capability.

3.
Opt Express ; 24(3): 2436-42, 2016 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-26906819

RESUMO

We present an experimental study of Hetero-Chiral (HC) plasmonic lenses, comprised of constituents with opposite chirality, demonstrating linearly dichroic focusing. The lenses focus only light with a specific linear polarization and result in a dark focal spot for the orthogonal polarization state. We introduce the design concepts and quantitatively compare several members of the HC family, deriving necessary conditions for linear dichroism and several comparative engineering parameters. The HC lenses were experimentally investigated using aperture-less near field scanning microscope collecting the amplitude of the plasmonic near-field. Our results exhibit an excellent match to the simulation predictions. The demonstrated ability for linearly dichroic functional focusing could lead to novel sensing applications.

4.
Nano Lett ; 15(9): 5739-43, 2015 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-26241100

RESUMO

We designed and realized a metasurface (manipulating the local geometry) spiral (manipulating the global geometry) plasmonic lens, which fundamentally overcomes the multiple efficiency and functionality challenges of conventional in-plane plasmonic lenses. The combination of spirality and metasurface achieves much more efficient and uniform linear-polarization-independent plasmonic focusing. As for functionality, under matched circularly polarized illumination the lens directs all of the power coupled to surface plasmon polaritons (SPPs) into the focal spot, while the orthogonal polarization excites only diverging SPPs that do not penetrate the interior of the lens, achieving 2 orders of magnitude intensity contrast throughout the entire area of the lens. This optimal functional focusing is clearly demonstrated by near-field optical microscopy measurements that are in excellent agreement with simulations and are supported by a detailed theoretical interpretation of the underlying mechanisms. Our results advance the field of plasmonics toward functional detection and the employment of SPPs in smart pixels, near-field microscopy, lithography, and particle manipulation.


Assuntos
Lentes , Ressonância de Plasmônio de Superfície/instrumentação , Desenho de Equipamento , Luz , Espalhamento de Radiação , Propriedades de Superfície
5.
Appl Opt ; 51(33): 8034-40, 2012 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-23207314

RESUMO

For many microscopy applications, millimeters-long free working distances (LWD) are required. However, the high resolution and contrast of LWD objectives operated in air are lost when introducing glass and/or liquid with the sample. We propose to use spatial light modulation to correct for such beam aberrations caused by refractive index mismatches. Focusing a monochromatic laser beam with a 10 mm working distance air objective (50×, 0.5 NA) through air, glass, and water, we manage to restore a sharp, intense focus (FWHM<2λ) by adaptive beam phase shaping. Our approach offers a practical and cost-effective route to high resolution and contrast microscopy using LWD air objectives, extending their usage beyond applications in air.

6.
Opt Express ; 20(28): 29237-51, 2012 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-23388749

RESUMO

We experimentally demonstrate spatiotemporal focusing of light on single nanocrystals embedded inside a strongly scattering medium. Our approach is based on spatial wave front shaping of short pulses, using second harmonic generation inside the target nanocrystals as the feedback signal. We successfully develop a model both for the achieved pulse duration as well as the observed enhancement of the feedback signal. The approach enables exciting opportunities for studies of light propagation in the presence of strong scattering as well as for applications in imaging, micro- and nanomanipulation, coherent control and spectroscopy in complex media.

7.
Phys Rev Lett ; 106(10): 103901, 2011 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-21469791

RESUMO

We report the first experimental demonstration of combined spatial and temporal control of light transmission through opaque media. This control is achieved by solely manipulating spatial degrees of freedom of the incident wave front. As an application, we demonstrate that the present approach is capable of forming bandwidth-limited ultrashort pulses from the otherwise randomly transmitted light with a controllable interaction time of the pulses with the medium. Our approach provides a new tool for fundamental studies of light propagation in complex media and has the potential for applications for coherent control, sensing and imaging in nano- and biophotonics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...