Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 441: 138175, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38194793

RESUMO

Salvia officinalis L. has attracted scientific and industrial interest due to its pharmacological properties. However, its detailed phytochemical profile and its correlation with beneficial effects in the human microbiome and oxidative stress remained elusive. To unveil this, S. officinalis was collected from the region of Epirus and its molecular identity was verified with DNA barcoding. Phytochemical profile for both aqueous and ethanol-based extracts was determined by high-pressure liquid chromatography-tandem mass spectrometry and 103 phytochemicals were determined. The effect of S. officinalis extracts as functional regulators of food microbiota by stimulating the growth of Lacticaseibacillus rhamnosus strains and by suppressing evolution of pathogenic bacteria was verified. Furthermore, we recorded that both extracts exhibited a significant cellular protection against H2O2-induced DNA damage. Finally, both extracts exhibited strong inhibitory effect towards LDL oxidation. This study provides a comprehensive characterization of S. officinalis on its phytochemical components as also its potential impact in human microbiome and oxidative stress.


Assuntos
Salvia officinalis , Humanos , Salvia officinalis/química , Peróxido de Hidrogênio , Extratos Vegetais/química , Compostos Fitoquímicos/análise , Antioxidantes/química
2.
Antioxidants (Basel) ; 12(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36830058

RESUMO

In recent decades, there has been growing interest in the fortification of dairy products with antioxidants and phenolics derived from plant byproducts and herbs. The present study focused on the analysis of dairy products, including kefir, cream cheese, yogurt, and vegan yogurt, enhanced with aqueous extracts of plant byproducts (Citrus aurantium peel, Citrus limon peel and Rosa canina seed) and herbs (Sideritis spp., Hypericum perforatum, Origanum dictamnus, Mentha pulegium L., Melissa oficinallis, Mentha spicata L. and Lavandula angustifolia) to characterize their antioxidant content, phenolic profile, and organoleptic characteristics. Antioxidant and phenolic content were determined by Folin-Ciocalteu and ferric reducing antioxidant power (FRAP) assays and presented values up to 46.61 ± 7.22 mmol Fe2+/L and 82.97 ± 4.29 mg gallic acid (GAE)/g, respectively for the aqueous extracts, as well as up to 0.68 ± 0.06 mmol Fe2+/L and 2.82 ± 0.36 mg GAE/g for the fortified dairy products. The bioavailability of antioxidants and phenolics in fortified foods was determined after in vitro digestion and ranged between 4 and 68%. The phytochemical profile of the aqueous extracts was determined by mass spectrometry, and 162 phytochemicals were determined, from which 128 belong to the polyphenol family including flavonoids and phenolic acids. Furthermore, most of the identified compounds have been recorded to possess enhanced antioxidant capacity in correlation to the in vitro findings. Finally, organoleptic evaluation showed an overall acceptability around 3.0 ± 1.0 on a 5-point scale. In conclusion, the studied plants and herbal extracts can be used for the fortification of a variety of dairy products with potential positive effects on human health.

3.
Molecules ; 27(24)2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36557903

RESUMO

Gallic acid is a phenolic acid present in various plants, nuts, and fruits. It is well known for its anti-oxidative and anti-inflammatory properties. The phenethyl ester of gallic acid (PEGA) was synthesized with the aim of increasing the bioavailability of gallic acid, and thus its pharmacological potential. Here, the effects of PEGA on encephalitogenic cells were examined, and PEGA was found to modulate the inflammatory activities of T cells and macrophages/microglia. Specifically, PEGA reduced the release of interleukin (IL)-17 and interferon (IFN)-γ from T cells, as well as NO, and IL-6 from macrophages/microglia. Importantly, PEGA ameliorated experimental autoimmune encephalomyelitis, an animal model of chronic inflammatory disease of the central nervous system (CNS)-multiple sclerosis. Thus, PEGA is a potent anti-inflammatory compound with a perspective to be further explored in the context of CNS autoimmunity and other chronic inflammatory disorders.


Assuntos
Encefalomielite Autoimune Experimental , Animais , Camundongos , Encefalomielite Autoimune Experimental/tratamento farmacológico , Ácido Gálico/farmacologia , Ácido Gálico/uso terapêutico , Sistema Nervoso Central , Microglia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Camundongos Endogâmicos C57BL
4.
FEBS J ; 289(18): 5617-5636, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35380736

RESUMO

An approach based on the combined use of saturation transfer difference (STD), Tr-NOESY and Inter-ligand NOEs for PHArmacophore Mapping (INPHARMA) NMR techniques and docking calculations is reported, for the first time, for mapping interactions and specific binding sites of caproleic acid (10 : 1 cis-9), oleic acid (18 : 1 cis-9), linoleic acid (18 : 2 cis-9,12) and linolenic (18 : 3, cis-9,12,15) free fatty acids (FFAs) with non-labelled serum albumin (BSA/HSA). Significant negative inter-ligand NOEs between the FFAs and the drugs ibuprofen and warfarin, through competition experiments, were observed. The inter-ligand NOEs and docking calculations were interpreted in terms of competitive binding mode, the significant folding of the bis allylic region and the presence of two orientations of the FFAs in the warfarin binding site (FA7), due to two potential distinctive anchoring polar groups of amino acids. This conformational flexibility is the reason that, the location and conformational states of the FFAs in the binding site of warfarin could not be determined accurately, despite numerous available X-ray structural studies. α-Linolenic acid competes favourably with warfarin at the binding site FA7. Isothermal titration calorimetry experiments of the preformed HSA/α-linolenic acid complex upon titration with warfarin show a significant reduction in the binding constant of warfarin, in very good agreement with NMR and computational data. The combined use, therefore, of STD, Tr-NOESY and INPHARMA NMR, ITC and docking calculations may find promising applications in the field of protein-lipid recognition research.


Assuntos
Ibuprofeno , Albumina Sérica , Aminoácidos/metabolismo , Sítios de Ligação , Ácidos Graxos , Ácidos Graxos não Esterificados , Ácidos Graxos Insaturados , Ligantes , Ácidos Linoleicos , Espectroscopia de Ressonância Magnética , Ácidos Oleicos , Ligação Proteica , Albumina Sérica/química , Varfarina/química , Ácido alfa-Linolênico
5.
Molecules ; 26(10)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34069122

RESUMO

Hypertension is one of the most common diseases nowadays and is still the major cause of premature death despite of the continuous discovery of novel therapeutics. The discovery of the Renin Angiotensin System (RAS) unveiled a path to develop efficient drugs to fruitfully combat hypertension. Several compounds that prevent the Angiotensin II hormone from binding and activating the AT1R, named sartans, have been developed. Herein, we report a comprehensive review of the synthetic paths followed for the development of different sartans since the discovery of the first sartan, Losartan.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/síntese química , Desenho de Fármacos , Receptor Tipo 1 de Angiotensina/metabolismo , Bloqueadores do Receptor Tipo 1 de Angiotensina II/química , Animais , Humanos , Pró-Fármacos/síntese química , Pró-Fármacos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...