Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(44): e2203468119, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36279448

RESUMO

Sea ice decline in the North Atlantic and Nordic Seas has been proposed to contribute to the repeated abrupt atmospheric warmings recorded in Greenland ice cores during the last glacial period, known as Dansgaard-Oeschger (D-O) events. However, the understanding of how sea ice changes were coupled with abrupt climate changes during D-O events has remained incomplete due to a lack of suitable high-resolution sea ice proxy records from northwestern North Atlantic regions. Here, we present a subdecadal-scale bromine enrichment (Brenr) record from the NEEM ice core (Northwest Greenland) and sediment core biomarker records to reconstruct the variability of seasonal sea ice in the Baffin Bay and Labrador Sea over a suite of D-O events between 34 and 42 ka. Our results reveal repeated shifts between stable, multiyear sea ice (MYSI) conditions during cold stadials and unstable, seasonal sea ice conditions during warmer interstadials. The shift from stadial to interstadial sea ice conditions occurred rapidly and synchronously with the atmospheric warming over Greenland, while the amplitude of high-frequency sea ice fluctuations increased through interstadials. Our findings suggest that the rapid replacement of widespread MYSI with seasonal sea ice amplified the abrupt climate warming over the course of D-O events and highlight the role of feedbacks associated with late-interstadial seasonal sea ice expansion in driving the North Atlantic ocean-climate system back to stadial conditions.


Assuntos
Mudança Climática , Camada de Gelo , Movimentos da Água , Bromo , Baías , Terra Nova e Labrador , Oceanos e Mares
2.
Sci Data ; 8(1): 141, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-34040008

RESUMO

We report high resolution measurements of the stable isotope ratios of ancient ice (δ18O, δD) from the North Greenland Eemian deep ice core (NEEM, 77.45° N, 51.06° E). The record covers the period 8-130 ky b2k (y before 2000) with a temporal resolution of ≈0.5 and 7 y at the top and the bottom of the core respectively and contains important climate events such as the 8.2 ky event, the last glacial termination and a series of glacial stadials and interstadials. At its bottom part the record contains ice from the Eemian interglacial. Isotope ratios are calibrated on the SMOW/SLAP scale and reported on the GICC05 (Greenland Ice Core Chronology 2005) and AICC2012 (Antarctic Ice Core Chronology 2012) time scales interpolated accordingly. We also provide estimates for measurement precision and accuracy for both δ18O and δD.

3.
Science ; 345(6201): 1177-80, 2014 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-25190795

RESUMO

Greenland ice core water isotopic composition (δ(18)O) provides detailed evidence for abrupt climate changes but is by itself insufficient for quantitative reconstruction of past temperatures and their spatial patterns. We investigate Greenland temperature evolution during the last deglaciation using independent reconstructions from three ice cores and simulations with a coupled ocean-atmosphere climate model. Contrary to the traditional δ(18)O interpretation, the Younger Dryas period was 4.5° ± 2°C warmer than the Oldest Dryas, due to increased carbon dioxide forcing and summer insolation. The magnitude of abrupt temperature changes is larger in central Greenland (9° to 14°C) than in the northwest (5° to 9°C), fingerprinting a North Atlantic origin. Simulated changes in temperature seasonality closely track changes in the Atlantic overturning strength and support the hypothesis that abrupt climate change is mostly a winter phenomenon.


Assuntos
Mudança Climática , Camada de Gelo , Temperatura , Simulação por Computador , Congelamento , Groenlândia , Modelos Teóricos , Isótopos de Oxigênio/análise
4.
Isotopes Environ Health Stud ; 46(4): 463-75, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21154005

RESUMO

A new technique for high-resolution simultaneous isotopic analysis of δ¹8O and δD in liquid water is presented. A continuous stream flash evaporator has been designed that is able to vapourise a stream of liquid water in a continuous mode and deliver a stable and finely controlled water vapour sample to a commercially available infrared cavity ring-down spectrometer. Injection of sub-microlitre amounts of the liquid water is achieved by pumping liquid water sample through a fused silica capillary and instantaneously vapourising it with 100% efficiency in a home-made oven at a temperature of 170 °C. The system's simplicity, low power consumption and low dead volume together with the possibility for automated unattended operation provides a solution for the calibration of laser instruments performing isotopic analysis of water vapour. Our work is mainly driven by the possibility to perform high-resolution online water isotopic analysis on continuous-flow analysis (CFA) systems typically used to analyse the chemical composition of ice cores drilled in polar regions. In the following, we describe the system's precision and stability and sensitivity to varying levels of sample size and we assess the observed memory effects. A test run with standard waters of different isotopic compositions is presented, demonstrating the ability to calibrate the spectrometer's measurements on a VSMOW scale with a relatively simple and fast procedure.


Assuntos
Calibragem , Isótopos/análise , Água/química , Espectrometria de Massas , Espectroscopia de Luz Próxima ao Infravermelho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...