Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37342968

RESUMO

Simulation is a key tool in population genetics for both methods development and empirical research, but producing simulations that recapitulate the main features of genomic datasets remains a major obstacle. Today, more realistic simulations are possible thanks to large increases in the quantity and quality of available genetic data, and the sophistication of inference and simulation software. However, implementing these simulations still requires substantial time and specialized knowledge. These challenges are especially pronounced for simulating genomes for species that are not well-studied, since it is not always clear what information is required to produce simulations with a level of realism sufficient to confidently answer a given question. The community-developed framework stdpopsim seeks to lower this barrier by facilitating the simulation of complex population genetic models using up-to-date information. The initial version of stdpopsim focused on establishing this framework using six well-characterized model species (Adrion et al., 2020). Here, we report on major improvements made in the new release of stdpopsim (version 0.2), which includes a significant expansion of the species catalog and substantial additions to simulation capabilities. Features added to improve the realism of the simulated genomes include non-crossover recombination and provision of species-specific genomic annotations. Through community-driven efforts, we expanded the number of species in the catalog more than threefold and broadened coverage across the tree of life. During the process of expanding the catalog, we have identified common sticking points and developed the best practices for setting up genome-scale simulations. We describe the input data required for generating a realistic simulation, suggest good practices for obtaining the relevant information from the literature, and discuss common pitfalls and major considerations. These improvements to stdpopsim aim to further promote the use of realistic whole-genome population genetic simulations, especially in non-model organisms, making them available, transparent, and accessible to everyone.


Assuntos
Genoma , Software , Simulação por Computador , Genética Populacional , Genômica
2.
Genetics ; 220(3)2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-34897427

RESUMO

Stochastic simulation is a key tool in population genetics, since the models involved are often analytically intractable and simulation is usually the only way of obtaining ground-truth data to evaluate inferences. Because of this, a large number of specialized simulation programs have been developed, each filling a particular niche, but with largely overlapping functionality and a substantial duplication of effort. Here, we introduce msprime version 1.0, which efficiently implements ancestry and mutation simulations based on the succinct tree sequence data structure and the tskit library. We summarize msprime's many features, and show that its performance is excellent, often many times faster and more memory efficient than specialized alternatives. These high-performance features have been thoroughly tested and validated, and built using a collaborative, open source development model, which reduces duplication of effort and promotes software quality via community engagement.


Assuntos
Algoritmos , Modelos Genéticos , Simulação por Computador , Genética Populacional , Mutação , Software
3.
F1000Res ; 9: 376, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32864105

RESUMO

The Sequence Read Archive (SRA) is a large public repository that stores raw next-generation sequencing data from thousands of diverse scientific investigations.  Despite its promise, reuse and re-analysis of SRA data has been challenged by the heterogeneity and poor quality of the metadata that describe its biological samples. Recently, the MetaSRA project standardized these metadata by annotating each sample with terms from biomedical ontologies. In this work, we present a pair of Jupyter notebook-based tools that utilize the MetaSRA for building structured datasets from the SRA in order to facilitate secondary analyses of the SRA's human RNA-seq data. The first tool, called the Case-Control Finder, finds suitable case and control samples for a given disease or condition where the cases and controls are matched by tissue or cell type.  The second tool, called the Series Finder, finds ordered sets of samples for the purpose of addressing biological questions pertaining to changes over a numerical property such as time. These tools were the result of a three-day-long NCBI Codeathon in March 2019 held at the University of North Carolina at Chapel Hill.


Assuntos
Ontologias Biológicas , Conjuntos de Dados como Assunto , Sequenciamento de Nucleotídeos em Larga Escala , Metadados , Software , Estudos de Casos e Controles , Humanos , RNA-Seq
4.
Elife ; 92020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32573438

RESUMO

The explosion in population genomic data demands ever more complex modes of analysis, and increasingly, these analyses depend on sophisticated simulations. Recent advances in population genetic simulation have made it possible to simulate large and complex models, but specifying such models for a particular simulation engine remains a difficult and error-prone task. Computational genetics researchers currently re-implement simulation models independently, leading to inconsistency and duplication of effort. This situation presents a major barrier to empirical researchers seeking to use simulations for power analyses of upcoming studies or sanity checks on existing genomic data. Population genetics, as a field, also lacks standard benchmarks by which new tools for inference might be measured. Here, we describe a new resource, stdpopsim, that attempts to rectify this situation. Stdpopsim is a community-driven open source project, which provides easy access to a growing catalog of published simulation models from a range of organisms and supports multiple simulation engine backends. This resource is available as a well-documented python library with a simple command-line interface. We share some examples demonstrating how stdpopsim can be used to systematically compare demographic inference methods, and we encourage a broader community of developers to contribute to this growing resource.


Assuntos
Genética Populacional , Biblioteca Genômica , Modelos Genéticos , Animais , Arabidopsis/genética , Cães/genética , Drosophila melanogaster/genética , Escherichia coli/genética , Genética Populacional/métodos , Genética Populacional/organização & administração , Genoma/genética , Genoma Humano/genética , Humanos , Pongo abelii/genética
5.
Mol Biol Evol ; 36(6): 1162-1171, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30840069

RESUMO

The Ashkenazi Jews (AJ) are a population isolate sharing ancestry with both European and Middle Eastern populations that has likely resided in Central Europe since at least the tenth century. Between the 11th and 16th centuries, the AJ population expanded eastward leading to two culturally distinct communities in Western/Central and Eastern Europe. Our aim was to determine whether the western and eastern groups are genetically distinct, and if so, what demographic processes contributed to population differentiation. We used Approximate Bayesian Computation to choose among models of AJ history and to infer demographic parameter values, including divergence times, effective population sizes, and levels of gene flow. For the ABC analysis, we used allele frequency spectrum and identical by descent-based statistics to capture information on a wide timescale. We also mitigated the effects of ascertainment bias when performing ABC on SNP array data by jointly modeling and inferring SNP discovery. We found that the most likely model was population differentiation between Eastern and Western AJ ∼400 years ago. The differentiation between the Eastern and Western AJ could be attributed to more extreme population growth in the Eastern AJ (0.250 per generation) than the Western AJ (0.069 per generation).


Assuntos
Fluxo Gênico , Judeus/genética , Modelos Genéticos , Crescimento Demográfico , Teorema de Bayes , Europa (Continente) , Migração Humana , Humanos , População Branca/genética
6.
Hum Biol ; 85(6): 859-900, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25079123

RESUMO

The origin and history of the Ashkenazi Jewish population have long been of great interest, and advances in high-throughput genetic analysis have recently provided a new approach for investigating these topics. We and others have argued on the basis of genome-wide data that the Ashkenazi Jewish population derives its ancestry from a combination of sources tracing to both Europe and the Middle East. It has been claimed, however, through a reanalysis of some of our data, that a large part of the ancestry of the Ashkenazi population originates with the Khazars, a Turkic-speaking group that lived to the north of the Caucasus region ~1,000 years ago. Because the Khazar population has left no obvious modern descendants that could enable a clear test for a contribution to Ashkenazi Jewish ancestry, the Khazar hypothesis has been difficult to examine using genetics. Furthermore, because only limited genetic data have been available from the Caucasus region, and because these data have been concentrated in populations that are genetically close to populations from the Middle East, the attribution of any signal of Ashkenazi-Caucasus genetic similarity to Khazar ancestry rather than shared ancestral Middle Eastern ancestry has been problematic. Here, through integration of genotypes from newly collected samples with data from several of our past studies, we have assembled the largest data set available to date for assessment of Ashkenazi Jewish genetic origins. This data set contains genome-wide single-nucleotide polymorphisms in 1,774 samples from 106 Jewish and non-Jewish populations that span the possible regions of potential Ashkenazi ancestry: Europe, the Middle East, and the region historically associated with the Khazar Khaganate. The data set includes 261 samples from 15 populations from the Caucasus region and the region directly to its north, samples that have not previously been included alongside Ashkenazi Jewish samples in genomic studies. Employing a variety of standard techniques for the analysis of population-genetic structure, we found that Ashkenazi Jews share the greatest genetic ancestry with other Jewish populations and, among non-Jewish populations, with groups from Europe and the Middle East. No particular similarity of Ashkenazi Jews to populations from the Caucasus is evident, particularly populations that most closely represent the Khazar region. Thus, analysis of Ashkenazi Jews together with a large sample from the region of the Khazar Khaganate corroborates the earlier results that Ashkenazi Jews derive their ancestry primarily from populations of the Middle East and Europe, that they possess considerable shared ancestry with other Jewish populations, and that there is no indication of a significant genetic contribution either from within or from north of the Caucasus region.


Assuntos
Judeus/genética , Terras Antigas/etnologia , Europa (Continente)/etnologia , Feminino , Genética Populacional/métodos , Estudo de Associação Genômica Ampla , História Antiga , História Medieval , Humanos , Judeus/história , Masculino , Oriente Médio/etnologia , Polimorfismo de Nucleotídeo Único/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...