Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 916: 170213, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38278226

RESUMO

Boreal peatlands store most of their carbon in layers deeper than 0.5 m under anaerobic conditions, where carbon dioxide and methane are produced as terminal products of organic matter degradation. Since the global warming potential of methane is much greater than that of carbon dioxide, the balance between the production rates of these gases is important for future climate predictions. Herein, we aimed to understand whether anaerobic methane oxidation (AMO) could explain the high CO2/CH4 anaerobic production ratios that are widely observed for the deeper peat layers of boreal peatlands. Furthermore, we quantified the metabolic pathways of methanogenesis to examine whether hydrogenotrophic methanogenesis is a dominant methane production pathway for the presumably recalcitrant deeper peat. To assess the CH4 cycling in deeper peat, we combined laboratory anaerobic incubations with a pathway-specific inhibitor, in situ depth patterns of stable isotopes in CH4, and 16S rRNA gene amplicon sequencing for three representative boreal peatlands in Western Siberia. We found up to a 69 % reduction in CH4 production due to AMO, which largely explained the high CO2/CH4 anaerobic production ratios and the in situ depth-related patterns of δ13C and δD in methane. The absence of acetate accumulation after inhibiting acetotrophic methanogenesis and the presence of sulfate- and nitrate-reducing anaerobic acetate oxidizers in the deeper peat indicated that these microorganisms use SO42- and NO3- as electron acceptors. Acetotrophic methanogenesis dominated net CH4 production in the deeper peat, accounting for 81 ± 13 %. Overall, anaerobic oxidation is quantitatively important for the methane cycle in the deeper layers of boreal peatlands, affecting both methane and its main precursor concentrations.


Assuntos
Dióxido de Carbono , Microbiota , Dióxido de Carbono/análise , Anaerobiose , Metano/metabolismo , Solo , RNA Ribossômico 16S , Acetatos , Isótopos
2.
Glob Chang Biol ; 29(18): 5334-5351, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37409557

RESUMO

The expansive plains of West Siberia contain globally significant carbon stocks, with Earth's most extensive peatland complex overlying the world's largest-known hydrocarbon basin. Numerous terrestrial methane seeps have recently been discovered on this landscape, located along the floodplains of the Ob and Irtysh Rivers in hotspots covering more than 2500 km2 . We articulated three hypotheses to explain the origin and migration pathways of methane within these seeps: (H1) uplift of Cretaceous-aged methane from deep petroleum reservoirs along faults and fractures, (H2) release of Oligocene-aged methane capped or trapped by degrading permafrost, and (H3) horizontal migration of Holocene-aged methane from surrounding peatlands. We tested these hypotheses using a range of geochemical tools on gas and water samples extracted from seeps, peatlands, and aquifers across the 120,000 km2 study area. Seep-gas composition, radiocarbon age, and stable isotope fingerprints favor the peatland hypothesis of seep-methane origin (H3). Organic matter in raised bogs is the primary source of seep methane, but observed variability in stable isotope composition and concentration suggest production in two divergent biogeochemical settings that support distinct metabolic pathways of methanogenesis. Comparison of these parameters in raised bogs and seeps indicates that the first is bogs, via CO2 reduction methanogenesis. The second setting is likely groundwater, where dissolved organic carbon from bogs is degraded via chemolithotrophic acetogenesis followed by acetate fermentation methanogenesis. Our findings highlight the importance of methane lateral migration in West Siberia's bog-dominated landscapes via intimate groundwater connections. The same phenomenon could occur in similar landscapes across the boreal-taiga biome, thereby making groundwater-fed rivers and springs potent methane sources.


Assuntos
Hidrocarbonetos , Metano , Metano/metabolismo , Sibéria , Redes e Vias Metabólicas , Isótopos
3.
Appl Environ Microbiol ; 80(19): 5944-54, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25063667

RESUMO

A complex system of muddy fluid-discharging and methane (CH4)-releasing seeps was discovered in a valley of the river Mukhrinskaya, one of the small rivers of the Irtysh Basin, West Siberia. CH4 flux from most (90%) of these gas ebullition sites did not exceed 1.45 g CH4 h(-1), while some seeps emitted up to 5.54 g CH4 h(-1). The δ(13)C value of methane released from these seeps varied between -71.1 and -71.3‰, suggesting its biogenic origin. Although the seeps were characterized by low in situ temperatures (3.5 to 5°C), relatively high rates of methane oxidation (15.5 to 15.9 nmol CH4 ml(-1) day(-1)) were measured in mud samples. Fluorescence in situ hybridization detected 10(7) methanotrophic bacteria (MB) per g of mud (dry weight), which accounted for up to 20.5% of total bacterial cell counts. Most (95.8 to 99.3%) methanotroph cells were type I (gammaproteobacterial) MB. The diversity of methanotrophs in this habitat was further assessed by pyrosequencing of pmoA genes, encoding particulate methane monooxygenase. A total of 53,828 pmoA gene sequences of seep-inhabiting methanotrophs were retrieved and analyzed. Nearly all of these sequences affiliated with type I MB, including the Methylobacter-Methylovulum-Methylosoma group, lake cluster 2, and several as-yet-uncharacterized methanotroph clades. Apparently, microbial communities attenuating methane fluxes from these local but strong CH4 sources in floodplains of high-latitude rivers have a large proportion of potentially novel, psychrotolerant methanotrophs, thereby providing a challenge for future isolation studies.


Assuntos
Gammaproteobacteria/isolamento & purificação , Metano/metabolismo , Oxigenases/genética , Proteínas de Bactérias/genética , Sequência de Bases , Temperatura Baixa , Ecossistema , Gammaproteobacteria/genética , Gammaproteobacteria/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala , Hibridização in Situ Fluorescente , Metano/química , Methylococcaceae/genética , Methylococcaceae/isolamento & purificação , Methylococcaceae/fisiologia , Dados de Sequência Molecular , Oxirredução , Filogenia , Rios , Análise de Sequência de DNA , Sibéria
4.
Environ Microbiol ; 6(11): 1159-73, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15479249

RESUMO

Sites in the West Siberian peat bog 'Bakchar' were acidic (pH 4.2-4.8), low in nutrients, and emitted CH4 at rates of 0.2-1.5 mmol m(-2) h(-1). The vertical profile of delta13CH4 and delta13CO2 dissolved in the porewater indicated increasing isotope fractionation and thus increasing contribution of H2/CO2-dependent methanogenesis with depth. The anaerobic microbial community at 30-50 cm below the water table produced CH4 with optimum activity at 20-25 degrees C and pH 5.0-5.5 respectively. Inhibition of methanogenesis with 2-bromo-ethane sulphonate showed that acetate, phenyl acetate, phenyl propionate and caproate were important intermediates in the degradation pathway of organic matter to CH4. Further degradation of these intermediates indicated that 62-72% of the CH4 was ultimately derived from acetate, the remainder from H2/CO2. Turnover times of [2-14C]acetate were on the order of 2 days (15, 25 degrees C) and accounted for 60-65% of total CH4 production. Conversion of 14CO2 to 14CH4 accounted for 35-43% of total CH4 production. These results showed that acetoclastic and hydrogenotrophic methanogenesis operated closely at a ratio of approximately 2 : 1 irrespective of the incubation temperature (4, 15 and 25 degrees C). The composition of the archaeal community was determined in the peat samples by terminal restriction fragment length polymorphism (T-RFLP) analysis and sequencing of amplified SSU rRNA gene fragments, and showed that members of Methanomicrobiaceae, Methanosarcinaceae and Rice cluster II (RC-II) were present. Other, presumably non-methanogenic archaeal clusters (group III, RC-IV, RC-V, RC-VI) were also detected. Fluorescent in situ hybridization (FISH) showed that the number of Bacteria decreased (from 24 x 10(7) to 4 x 10(7) cells per gram peat) with depth (from 5 to 55 cm below the water table), whereas the numbers of Archaea slightly increased (from 1 x 10(7) to 2 x 10(7) cells per gram peat). Methanosarcina spp. accounted for about half of the archaeal cells. Our results show that both hydrogenotrophic and acetoclastic methanogenesis are an integral part of the CH4-producing pathway in acidic peat and were represented by appropriate methanogenic populations.


Assuntos
Ácido Acético/metabolismo , Euryarchaeota/classificação , Euryarchaeota/metabolismo , Hidrogênio/metabolismo , Metano/metabolismo , Microbiologia do Solo , Ácidos Alcanossulfônicos/farmacologia , Bactérias/genética , Bactérias/isolamento & purificação , Caproatos/metabolismo , Dióxido de Carbono/metabolismo , DNA Arqueal/química , DNA Arqueal/isolamento & purificação , DNA Ribossômico/química , DNA Ribossômico/isolamento & purificação , Inibidores Enzimáticos/farmacologia , Euryarchaeota/genética , Euryarchaeota/isolamento & purificação , Genes de RNAr , Concentração de Íons de Hidrogênio , Hibridização in Situ Fluorescente , Methanomicrobiaceae/classificação , Methanomicrobiaceae/genética , Methanomicrobiaceae/isolamento & purificação , Methanomicrobiaceae/metabolismo , Methanosarcina/classificação , Methanosarcina/genética , Methanosarcina/isolamento & purificação , Methanosarcina/metabolismo , Methanosarcinaceae/classificação , Methanosarcinaceae/genética , Methanosarcinaceae/isolamento & purificação , Methanosarcinaceae/metabolismo , Dados de Sequência Molecular , Fenilacetatos/metabolismo , Fenilpropionatos/metabolismo , Filogenia , Polimorfismo de Fragmento de Restrição , RNA Arqueal/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Sibéria , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...