Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Metab ; 4(7): 883-900, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35817855

RESUMO

Sexual dimorphisms are responsible for profound metabolic differences in health and behavior. Whether males and females react differently to environmental cues, such as solar ultraviolet (UV) exposure, is unknown. Here we show that solar exposure induces food-seeking behavior, food intake, and food-seeking behavior and food intake in men, but not in women, through epidemiological evidence of approximately 3,000 individuals throughout the year. In mice, UVB exposure leads to increased food-seeking behavior, food intake and weight gain, with a sexual dimorphism towards males. In both mice and human males, increased appetite is correlated with elevated levels of circulating ghrelin. Specifically, UVB irradiation leads to p53 transcriptional activation of ghrelin in skin adipocytes, while a conditional p53-knockout in mice abolishes UVB-induced ghrelin expression and food-seeking behavior. In females, estrogen interferes with the p53-chromatin interaction on the ghrelin promoter, thus blocking ghrelin and food-seeking behavior in response to UVB exposure. These results identify the skin as a major mediator of energy homeostasis and may lead to therapeutic opportunities for sex-based treatments of endocrine-related diseases.


Assuntos
Grelina , Proteína Supressora de Tumor p53 , Animais , Apetite , Feminino , Grelina/farmacologia , Humanos , Masculino , Camundongos , Proteína Supressora de Tumor p53/genética , Raios Ultravioleta , Aumento de Peso
2.
Nat Commun ; 10(1): 5657, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31827083

RESUMO

MicroRNA (miRNA) biogenesis initiates co-transcriptionally, but how the Microprocessor machinery pinpoints the locations of short precursor miRNA sequences within long flanking regions of the transcript is not known. Here we show that miRNA biogenesis depends on DNA methylation. When the regions flanking the miRNA coding sequence are highly methylated, the miRNAs are more highly expressed, have greater sequence conservation, and are more likely to drive cancer-related phenotypes than miRNAs encoded by unmethylated loci. We show that the removal of DNA methylation from miRNA loci leads to their downregulation. Further, we found that MeCP2 binding to methylated miRNA loci halts RNA polymerase II elongation, leading to enhanced processing of the primary miRNA by Drosha. Taken together, our data reveal that DNA methylation directly affects miRNA biogenesis.


Assuntos
MicroRNAs/genética , Animais , Linhagem Celular , Metilação de DNA , Humanos , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Camundongos , MicroRNAs/metabolismo , Fases de Leitura Aberta , Processamento Pós-Transcricional do RNA
3.
Nucleic Acids Res ; 47(12): 6145-6159, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31076740

RESUMO

Chromatin organization and epigenetic markers influence splicing, though the magnitudes of these effects and the mechanisms are largely unknown. Here, we demonstrate that linker histone H1.5 influences mRNA splicing. We observed that linker histone H1.5 binds DNA over splice sites of short exons in human lung fibroblasts (IMR90 cells). We found that association of H1.5 with these splice sites correlated with the level of inclusion of alternatively spliced exons. Exons marked by H1.5 had more RNA polymerase II (RNAP II) stalling near the 3' splice site than did exons not associated with H1.5. In cells depleted of H1.5, we showed that the inclusion of five exons evaluated decreased and that RNAP II levels over these exons were also reduced. Our findings indicate that H1.5 is involved in regulation of splice site selection and alternative splicing, a function not previously demonstrated for linker histones.


Assuntos
Processamento Alternativo , Histonas/metabolismo , Sítios de Splice de RNA , Linhagem Celular , Cromatina/metabolismo , DNA/metabolismo , Éxons , Humanos , Íntrons , RNA Polimerase II/metabolismo
4.
Cell Rep ; 11(4): 618-29, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25892229

RESUMO

Much remains unknown concerning the mechanism by which the splicing machinery pinpoints short exons within intronic sequences and how splicing factors are directed to their pre-mRNA targets. One probable explanation lies in differences in chromatin organization between exons and introns. Proteomic, co-immunoprecipitation, and sedimentation analyses described here indicate that SF3B1, an essential splicing component of the U2 snRNP complex, is strongly associated with nucleosomes. ChIP-seq and RNA-seq analyses reveal that SF3B1 specifically binds nucleosomes located at exonic positions. SF3B1 binding is enriched at nucleosomes positioned over short exons flanked by long introns that are also characterized by differential GC content between exons and introns. Disruption of SF3B1 binding to such nucleosomes affects splicing of these exons similarly to SF3B1 knockdown. Our findings suggest that the association of SF3B1 with nucleosomes is functionally important for splice-site recognition and that SF3B1 conveys splicing-relevant information embedded in chromatin structure.


Assuntos
Nucleossomos/metabolismo , Fosfoproteínas/metabolismo , Splicing de RNA , Ribonucleoproteína Nuclear Pequena U2/metabolismo , Sequência de Bases , Éxons , Sequência Rica em GC , Células HeLa , Humanos , Dados de Sequência Molecular , Nucleossomos/genética , Fosfoproteínas/genética , Ligação Proteica , Fatores de Processamento de RNA , Ribonucleoproteína Nuclear Pequena U2/genética
5.
Cell Rep ; 10(7): 1122-34, 2015 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-25704815

RESUMO

The global impact of DNA methylation on alternative splicing is largely unknown. Using a genome-wide approach in wild-type and methylation-deficient embryonic stem cells, we found that DNA methylation can either enhance or silence exon recognition and affects the splicing of more than 20% of alternative exons. These exons are characterized by distinct genetic and epigenetic signatures. Alternative splicing regulation of a subset of these exons can be explained by heterochromatin protein 1 (HP1), which silences or enhances exon recognition in a position-dependent manner. We constructed an experimental system using site-specific targeting of a methylated/unmethylated gene and demonstrate a direct causal relationship between DNA methylation and alternative splicing. HP1 regulates this gene's alternative splicing in a methylation-dependent manner by recruiting splicing factors to its methylated form. Our results demonstrate DNA methylation's significant global influence on mRNA splicing and identify a specific mechanism of splicing regulation mediated by HP1.


Assuntos
Processamento Alternativo , Proteínas Cromossômicas não Histona/metabolismo , Metilação de DNA , Animais , Linhagem Celular , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/antagonistas & inibidores , Proteínas Cromossômicas não Histona/genética , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/deficiência , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Epigênese Genética , Éxons , Genoma , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Interferência de RNA , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Processamento de Serina-Arginina , DNA Metiltransferase 3B
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...