Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 252: 109645, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31610449

RESUMO

In the austral spring, biomass fires affect a vast area of South America each year. We combined in situ ozone (O3) data, measured in the states of São Paulo and Paraná, Brazil, in the period 2014-2017, with aerosol optical depth, co-pollutants (NOx, PM2.5 and PM10) and air backtrajectories to identify sources, transport and geographical patterns in the air pollution data. We applied cluster analysis to hourly O3 data and split the investigation area of approximately 290,000 km2 into five groups with similar features in terms of diurnal, weekly, monthly and seasonal O3 concentrations. All groups presented a peak in September and October, associated with the fire activities and enhanced photochemistry. The highest mean O3 concentrations were measured inland whilst, besides having lower concentrations, the coastal group was also associated with the smallest diurnal and seasonal variations. The latter was attributed to lower photochemical activity due to frequently occurring overcast weather situation. The mean annual regional contribution of O3 over the area was 61 µg/m3, with large seasonal and intersite variabilities (from 35 to 84 µg/m3). The long-range transport of smoke contributed with between 23 and 41% of the total O3 during the pollution events. A pollution outbreak in September 2015 caused many-fold increases in O3, PM2.5 and PM10 across the investigation area, which exceeded the World Health Organisation recommendations. We show that the regional transport of particulates and gas due to biomass burning overlays the local emissions in already highly polluted cities. Such an effect can outweigh local measures to curb anthropogenic air pollution in cities.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Meteorologia , Ozônio , Biomassa , Brasil , Cidades , Monitoramento Ambiental , Estações do Ano
2.
Nat Commun ; 7: 12016, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27327838

RESUMO

Determining the effects of the formation of contrails within natural cirrus clouds has proven to be challenging. Quantifying any such effects is necessary if we are to properly account for the influence of aviation on climate. Here we quantify the effect of aircraft on the optical thickness of already-existing cirrus clouds by matching actual aircraft flight tracks to satellite lidar measurements. We show that there is a systematic, statistically significant increase in normalized cirrus cloud optical thickness inside mid-latitude flight tracks compared with adjacent areas immediately outside the tracks.

3.
J Geophys Res Atmos ; 119(13): 8169-8188, 2014 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-25821664

RESUMO

In this study Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua retrievals of aerosol optical thickness (AOT) at 555 nm are compared to Sun photometer measurements from Svalbard for a period of 9 years. For the 642 daily coincident measurements that were obtained, MODIS AOT generally varies within the predicted uncertainty of the retrieval over ocean (ΔAOT = ±0.03 ± 0.05 · AOT). The results from the remote sensing have been used to examine the accuracy in estimates of aerosol optical properties in the Arctic, generated by global climate models and from in situ measurements at the Zeppelin station, Svalbard. AOT simulated with the Norwegian Earth System Model/Community Atmosphere Model version 4 Oslo global climate model does not reproduce the observed seasonal variability of the Arctic aerosol. The model overestimates clear-sky AOT by nearly a factor of 2 for the background summer season, while tending to underestimate the values in the spring season. Furthermore, large differences in all-sky AOT of up to 1 order of magnitude are found for the Coupled Model Intercomparison Project phase 5 model ensemble for the spring and summer seasons. Large differences between satellite/ground-based remote sensing of AOT and AOT estimated from dry and humidified scattering coefficients are found for the subarctic marine boundary layer in summer. KEY POINTS: Remote sensing of AOT is very useful in validation of climate models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...