Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
eNeuro ; 9(3)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35508370

RESUMO

Because of their ex utero development, relatively simple nervous system, translucency, and availability of tools to investigate neural function, larval zebrafish are an exceptional model for understanding neurodevelopmental disorders and the consequences of environmental toxins. Furthermore, early in development, zebrafish larvae easily absorb chemicals from water, a significant advantage over methods required to expose developing organisms to chemical agents in utero Bisphenol A (BPA) and BPA analogs are ubiquitous environmental toxins with known molecular consequences. All humans have measurable quantities of BPA in their bodies. Most concerning, the level of BPA exposure is correlated with neurodevelopmental difficulties in people. Given the importance of understanding the health-related effects of this common toxin, we have exploited the experimental advantages of the larval zebrafish model system to investigate the behavioral and anatomic effects of BPA exposure. We discovered that BPA exposure early in development leads to deficits in the processing of sensory information, as indicated by BPA's effects on prepulse inhibition (PPI) and short-term habituation (STH) of the C-start reflex. We observed no changes in locomotion, thigmotaxis, and repetitive behaviors (circling). Despite changes in sensory processing, we detected no regional or whole-brain volume changes. Our results show that early BPA exposure can induce sensory processing deficits, as revealed by alterations in simple behaviors that are mediated by a well-defined neural circuit.


Assuntos
Compostos Benzidrílicos , Peixe-Zebra , Animais , Compostos Benzidrílicos/toxicidade , Humanos , Larva , Percepção , Fenóis
2.
Biochem Biophys Res Commun ; 564: 103-113, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34020774

RESUMO

The neurobiological nature of the memory trace (engram) remains controversial. The most widely accepted hypothesis at present is that long-term memory is stored as stable, learning-induced changes in synaptic connections. This hypothesis, the synaptic plasticity hypothesis of memory, is supported by extensive experimental data gathered from over 50 years of research. Nonetheless, there are important mnemonic phenomena that the synaptic plasticity hypothesis cannot, or cannot readily, account for. Furthermore, recent work indicates that epigenetic and genomic mechanisms play heretofore underappreciated roles in memory. Here, we critically assess the evidence that supports the synaptic plasticity hypothesis and discuss alternative non-synaptic, nuclear mechanisms of memory storage, including DNA methylation and retrotransposition. We argue that long-term encoding of memory is mediated by nuclear processes; synaptic plasticity, by contrast, represents a means of relatively temporary memory storage. In addition, we propose that memories are evaluated for their mnemonic significance during an initial period of synaptic storage; if assessed as sufficiently important, the memories then undergo nuclear encoding.


Assuntos
Núcleo Celular/metabolismo , Memória , Plasticidade Neuronal , Animais , Humanos
3.
eNeuro ; 7(6)2020.
Artigo em Inglês | MEDLINE | ID: mdl-33004417

RESUMO

Larval zebrafish possess a number of molecular and genetic advantages for rigorous biological analyses of learning and memory. These advantages have motivated the search for novel forms of memory in these animals that can be exploited for understanding the cellular and molecular bases of vertebrate memory formation and consolidation. Here, we report a new form of behavioral sensitization in zebrafish larvae that is elicited by an aversive chemical stimulus [allyl isothiocyanate (AITC)] and that persists for ≥30 min. This form of sensitization is expressed as enhanced locomotion and thigmotaxis, as well as elevated heart rate. To characterize the neural basis of this nonassociative memory, we used transgenic zebrafish expressing the fluorescent calcium indicator GCaMP6 (Chen et al., 2013); because of the transparency of larval zebrafish, we could optically monitor neural activity in the brain of intact transgenic zebrafish before and after the induction of sensitization. We found a distinct brain area, previously linked to locomotion, that exhibited persistently enhanced neural activity following washout of AITC; this enhanced neural activity correlated with the behavioral sensitization. These results establish a novel form of memory in larval zebrafish and begin to unravel the neural basis of this memory.


Assuntos
Memória , Peixe-Zebra , Animais , Animais Geneticamente Modificados , Larva , Locomoção
4.
J Neurosci ; 39(44): 8632-8644, 2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31537706

RESUMO

Persistent activity of protein kinase M (PKM), the truncated form of protein kinase C (PKC), can maintain long-term changes in synaptic strength in many systems, including the hermaphrodite marine mollusk, Aplysia californica Moreover, different types of long-term facilitation (LTF) in cultured Aplysia sensorimotor synapses rely on the activities of different PKM isoforms in the presynaptic sensory neuron and postsynaptic motor neuron. When the atypical PKM isoform is required, the kidney and brain expressed adaptor protein (KIBRA) is also required. Here, we explore how this isoform specificity is established. We find that PKM overexpression in the motor neuron, but not the sensory neuron, is sufficient to increase synaptic strength and that this activity is not isoform-specific. KIBRA is not the rate-limiting step in facilitation since overexpression of KIBRA is neither sufficient to increase synaptic strength, nor to prolong a form of PKM-dependent intermediate synaptic facilitation. However, the isoform specificity of dominant-negative-PKMs to erase LTF is correlated with isoform-specific competition for stabilization by KIBRA. We identify a new conserved region of KIBRA. Different splice isoforms in this region stabilize different PKMs based on the isoform-specific sequence of an α-helix "handle" in the PKMs. Thus, specific stabilization of distinct PKMs by different isoforms of KIBRA can explain the isoform specificity of PKMs during LTF in AplysiaSIGNIFICANCE STATEMENT Long-lasting changes in synaptic plasticity associated with memory formation are maintained by persistent protein kinases. We have previously shown in the Aplysia sensorimotor model that distinct isoforms of persistently active protein kinase Cs (PKMs) maintain distinct forms of long-lasting synaptic changes, even when both forms are expressed in the same motor neuron. Here, we show that, while the effects of overexpression of PKMs are not isoform-specific, isoform specificity is defined by a "handle" helix in PKMs that confers stabilization by distinct splice forms in a previously undefined domain of the adaptor protein KIBRA. Thus, we define new regions in both KIBRA and PKMs that define the isoform specificity for maintaining synaptic strength in distinct facilitation paradigms.


Assuntos
Neurônios Motores/fisiologia , Plasticidade Neuronal , Isoformas de Proteínas/fisiologia , Proteína Quinase C/fisiologia , Células Receptoras Sensoriais/fisiologia , Animais , Aplysia , Células Cultivadas , Gânglios dos Invertebrados/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Estabilidade Proteica
5.
NPJ Sci Learn ; 4: 9, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31285847

RESUMO

It has been 70 years since Donald Hebb published his formalized theory of synaptic adaptation during learning. Hebb's seminal work foreshadowed some of the great neuroscientific discoveries of the following decades, including the discovery of long-term potentiation and other lasting forms of synaptic plasticity, and more recently the residence of memories in synaptically connected neuronal assemblies. Our understanding of the processes underlying learning and memory has been dominated by the view that synapses are the principal site of information storage in the brain. This view has received substantial support from research in several model systems, with the vast majority of studies on the topic corroborating a role for synapses in memory storage. Yet, despite the neuroscience community's best efforts, we are still without conclusive proof that memories reside at synapses. Furthermore, an increasing number of non-synaptic mechanisms have emerged that are also capable of acting as memory substrates. In this review, we address the key findings from the synaptic plasticity literature that make these phenomena such attractive memory mechanisms. We then turn our attention to evidence that questions the reliance of memory exclusively on changes at the synapse and attempt to integrate these opposing views.

6.
PLoS One ; 14(4): e0214374, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30946762

RESUMO

Zebrafish larvae have several biological features that make them useful for cellular investigations of the mechanisms underlying learning and memory. Of particular interest in this regard is a rapid escape, or startle, reflex possessed by zebrafish larvae; this reflex, the C-start, is mediated by a relatively simple neuronal circuit and exhibits habituation, a non-associative form of learning. Here we demonstrate a rapid form of habituation of the C-start to touch that resembles the previously reported rapid habituation induced by auditory or vibrational stimuli. We also show that touch-induced habituation exhibits input specificity. This work sets the stage for in vivo optical investigations of the cellular sites of plasticity that mediate habituation of the C-start in the larval zebrafish.


Assuntos
Reação de Fuga/fisiologia , Habituação Psicofisiológica , Tato/fisiologia , Peixe-Zebra/fisiologia , Animais , Eletrochoque , Reação de Fuga/efeitos dos fármacos , Glicina/farmacologia , Habituação Psicofisiológica/efeitos dos fármacos , Cabeça , Larva/efeitos dos fármacos , Larva/fisiologia , Reflexo de Sobressalto/efeitos dos fármacos , Reflexo de Sobressalto/fisiologia , Estricnina/farmacologia
7.
eNeuro ; 5(3)2018.
Artigo em Inglês | MEDLINE | ID: mdl-29789810

RESUMO

The precise nature of the engram, the physical substrate of memory, remains uncertain. Here, it is reported that RNA extracted from the central nervous system of Aplysia given long-term sensitization (LTS) training induced sensitization when injected into untrained animals; furthermore, the RNA-induced sensitization, like training-induced sensitization, required DNA methylation. In cellular experiments, treatment with RNA extracted from trained animals was found to increase excitability in sensory neurons, but not in motor neurons, dissociated from naïve animals. Thus, the behavioral, and a subset of the cellular, modifications characteristic of a form of nonassociative long-term memory (LTM) in Aplysia can be transferred by RNA. These results indicate that RNA is sufficient to generate an engram for LTS in Aplysia and are consistent with the hypothesis that RNA-induced epigenetic changes underlie memory storage in Aplysia.


Assuntos
Aplysia/genética , Epigênese Genética , Memória de Longo Prazo/fisiologia , RNA/fisiologia , Animais , Comportamento Animal , Células Cultivadas , Metilação de DNA , Neurônios Motores/fisiologia , RNA/isolamento & purificação , Células Receptoras Sensoriais/fisiologia
8.
J Neurosci ; 38(8): 1926-1941, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29363582

RESUMO

Consolidation of newly formed fear memories requires a series of molecular events within the basolateral complex of the amygdala (BLA). Once consolidated, new information can be assimilated into these established associative networks to form higher-order associations. Much is known about the molecular events involved in consolidating newly acquired fear memories but little is known about the events that consolidate a secondary fear memory. Here, we show that, within the male rat BLA, DNA methylation and gene transcription are crucial for consolidating both the primary and secondary fear memories. We also show that consolidation of the primary, but not the secondary, fear memory requires de novo protein synthesis in the BLA. These findings show that consolidation of a fear memory and its updating to incorporate new information recruit distinct processes in the BLA, and suggest that DNA methylation in the BLA is fundamental to consolidation of both types of conditioned fear.SIGNIFICANCE STATEMENT Our data provide clear evidence that a different set of mechanisms mediate consolidation of learning about cues that signal learned sources of danger (i.e., second-order conditioned fear) compared with those involved in consolidation of learning about cues that signal innate sources of danger (i.e., first-order conditioned fear). These findings carry important implications because second-order learning could underlie aberrant fear-related behaviors (e.g., in anxiety disorders) as a consequence of neutral secondary cues being integrated into associative fear networks established through first-order pairings, and thereby becoming potent conditioned reinforcers and predictors of fear. Therefore, our data suggest that targeting such second-order conditioned triggers of fear may require pharmacological intervention different to that typically used for first-order conditioned cues.


Assuntos
Complexo Nuclear Basolateral da Amígdala/fisiologia , Medo/fisiologia , Consolidação da Memória/fisiologia , Animais , Condicionamento Clássico , Sinais (Psicologia) , Metilação de DNA/fisiologia , Masculino , Ratos , Ratos Sprague-Dawley , Transcrição Gênica/fisiologia
9.
Curr Biol ; 27(15): 2405, 2017 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-28787595
10.
Elife ; 62017 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-28067617

RESUMO

Previously, we reported that long-term memory (LTM) in Aplysia can be reinstated by truncated (partial) training following its disruption by reconsolidation blockade and inhibition of PKM (Chen et al., 2014). Here, we report that LTM can be induced by partial training after disruption of original consolidation by protein synthesis inhibition (PSI) begun shortly after training. But when PSI occurs during training, partial training cannot subsequently establish LTM. Furthermore, we find that inhibition of DNA methyltransferase (DNMT), whether during training or shortly afterwards, blocks consolidation of LTM and prevents its subsequent induction by truncated training; moreover, later inhibition of DNMT eliminates consolidated LTM. Thus, the consolidation of LTM depends on two functionally distinct phases of protein synthesis: an early phase that appears to prime LTM; and a later phase whose successful completion is necessary for the normal expression of LTM. Both the consolidation and maintenance of LTM depend on DNA methylation.


Assuntos
Aplysia/fisiologia , Metilação de DNA , Memória de Longo Prazo , Biossíntese de Proteínas , Animais
11.
Curr Biol ; 26(20): R965-R971, 2016 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-27780070

RESUMO

Members of the phylum Mollusca demonstrate the animal kingdom's tremendous diversity of body morphology, size and complexity of the nervous system, as well as diversity of behavioral repertoires, ranging from very simple to highly flexible. Molluscs include Solenogastres, with their worm-like bodies and behavior (see phylogenetic tree; Figure 1); Bivalvia (mussels and clams), protected by shells and practically immobile; and the cephalopods, such as the octopus, cuttlefish and squid. The latter are strange-looking animals with nervous systems comprising up to half a billion neurons, which mediate the complex behaviors that characterize these freely moving, highly visual predators. Molluscs are undoubtedly special - their extraordinary evolutionary advance somehow managed to sidestep the acquisition of the rigid skeleton that appears essential to the evolution of other 'successful' phyla: the exoskeleton in ecdysozoan invertebrates and the internal skeleton in Deuterostomia, including vertebrates.


Assuntos
Evolução Biológica , Moluscos/anatomia & histologia , Moluscos/fisiologia , Animais , Aprendizagem , Memória , Sistema Nervoso/anatomia & histologia , Fenômenos Fisiológicos do Sistema Nervoso
12.
Neurobiol Learn Mem ; 134 Pt B: 360-8, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27555232

RESUMO

The cellular and molecular basis of long-term memory in vertebrates remains poorly understood. Knowledge regarding long-term memory has been impeded by the enormous complexity of the vertebrate brain, particularly the mammalian brain, as well as by the relative complexity of the behavioral alterations examined in most studies of long-term memory in vertebrates. Here, we demonstrate a long-term form of nonassociative learning-specifically, long-term habituation (LTH)-of a simple reflexive escape response, the C-start, in zebrafish larvae. The C-start is triggered by the activation of one of a pair of giant neurons in the zebrafish's hindbrain, the Mauthner cells. We show that LTH of the C-start requires the activity of NMDA receptors and involves macromolecular synthesis. We further show that the long-term habituated reflex can by rapidly dishabituated by a brief tactile stimulus. Our results set the stage for rigorous, mechanistic investigations of the long-term memory for habituation of a reflexive behavioral response, one that is mediated by a relatively simple, neurobiologically tractable, neural circuit. Moreover, the demonstration of NMDAR and transcriptionally dependent LTH in a translucent vertebrate organism should facilitate the use of optical recording, and optogenetic manipulation, of neuronal activity to elucidate the cellular basis of a long-term vertebrate memory.


Assuntos
Habituação Psicofisiológica/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Reflexo/fisiologia , Peixe-Zebra/fisiologia , Animais , Larva , Proteínas de Peixe-Zebra
13.
Elife ; 3: e03896, 2014 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-25402831

RESUMO

Long-term memory (LTM) is believed to be stored in the brain as changes in synaptic connections. Here, we show that LTM storage and synaptic change can be dissociated. Cocultures of Aplysia sensory and motor neurons were trained with spaced pulses of serotonin, which induces long-term facilitation. Serotonin (5HT) triggered growth of new presynaptic varicosities, a synaptic mechanism of long-term sensitization. Following 5HT training, two antimnemonic treatments-reconsolidation blockade and inhibition of PKM--caused the number of presynaptic varicosities to revert to the original, pretraining value. Surprisingly, the final synaptic structure was not achieved by targeted retraction of the 5HT-induced varicosities but, rather, by an apparently arbitrary retraction of both 5HT-induced and original synapses. In addition, we find evidence that the LTM for sensitization persists covertly after its apparent elimination by the same antimnemonic treatments that erase learning-related synaptic growth. These results challenge the idea that stable synapses store long-term memories.


Assuntos
Aplysia/fisiologia , Comportamento Animal/fisiologia , Memória de Longo Prazo/fisiologia , Sinapses/fisiologia , Animais , Aplysia/efeitos dos fármacos , Aplysia/enzimologia , Comportamento Animal/efeitos dos fármacos , Benzofenantridinas/farmacologia , Técnicas de Cocultura , Epigênese Genética/efeitos dos fármacos , Histona Desacetilases/metabolismo , Memória de Longo Prazo/efeitos dos fármacos , Microscopia Confocal , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , Serotonina/farmacologia , Sinapses/efeitos dos fármacos
14.
Curr Biol ; 23(17): R728-31, 2013 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-24028954
15.
Front Neural Circuits ; 7: 126, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23935566

RESUMO

Larval zebrafish possess several experimental advantages for investigating the molecular and neural bases of learning and memory. Despite this, neuroscientists have only recently begun to use these animals to study memory. However, in a relatively short period of time a number of forms of learning have been described in zebrafish larvae, and significant progress has been made toward their understanding. Here we provide a comprehensive review of this progress; we also describe several promising new experimental technologies currently being used in larval zebrafish that are likely to contribute major insights into the processes that underlie learning and memory.


Assuntos
Habituação Psicofisiológica/fisiologia , Memória/fisiologia , Animais , Humanos , Larva , Aprendizagem/fisiologia , Peixe-Zebra
16.
F1000 Biol Rep ; 5: 4, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23413372

RESUMO

How can memories outlast the molecules from which they are made? Answers to this fundamental question have been slow coming but are now emerging. A novel kinase, an isoform of protein kinase C (PKC), PKMzeta, has been shown to be critical to the maintenance of some types of memory. Inhibiting the catalytic properties of this kinase can erase well-established memories without altering the ability of the erased synapse to be retrained. This article provides an overview of the literature linking PKMzeta to memory maintenance and identifies some of the controversial issues that surround the bold implications of the existing data. It concludes with a discussion of the future directions of this domain.

17.
J Neurosci ; 32(42): 14630-40, 2012 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-23077049

RESUMO

A constitutively active kinase, known as protein kinase Mζ (PKMζ), is proposed to act as a long-lasting molecular memory trace. While PKMζ is formed in rodents through translation of a transcript initiating in an intron of the protein kinase Cζ (PKCζ) gene, this transcript does not exist in Aplysia californica despite the fact that inhibitors of PKMζ erase memory in Aplysia in a fashion similar to rodents. We have previously shown that, in Aplysia, the ortholog of PKCζ, PKC Apl III, is cleaved by calpain to form a PKM after overexpression of PKC Apl III. We now show that kinase activity is required for this cleavage. We further use a FRET reporter to measure cleavage of PKC Apl III into PKM Apl III in live neurons using a stimulus that induces plasticity. Our results show that a 10 min application of serotonin induces cleavage of PKC Apl III in motor neuron processes in a calpain- and protein synthesis-dependent manner, but does not induce cleavage of PKC Apl III in sensory neuron processes. Furthermore, a dominant-negative PKM Apl III expressed in the motor neuron blocked the late phase of intermediate-term facilitation in sensory-motor neuron cocultures induced by 10 min of serotonin. In summary, we provide evidence that PKC Apl III is cleaved into PKM Apl III during memory formation, that the requirements for cleavage are the same as the requirements for the plasticity, and that PKM in the motor neuron is required for intermediate-term facilitation.


Assuntos
Aplysia/enzimologia , Memória/fisiologia , Proteína Quinase C/metabolismo , Serotonina/fisiologia , Animais , Linhagem Celular , Células Cultivadas , Isoenzimas/metabolismo , Neurônios Motores/enzimologia
18.
Curr Biol ; 22(19): 1783-8, 2012 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-22885063

RESUMO

When an animal is reminded of a prior experience and shortly afterward treated with a protein synthesis inhibitor, the consolidated memory for the experience can be disrupted; by contrast, protein synthesis inhibition without prior reminding commonly does not disrupt long-term memory [1-3]. Such results imply that the reminding triggers reconsolidation of the memory. Here, we asked whether the behavioral and synaptic changes associated with the memory for long-term sensitization (LTS) of the siphon-withdrawal reflex in the marine snail Aplysia californica [4, 5] could undergo reconsolidation. In support of this idea, we found that when sensitized animals were given abbreviated reminder sensitization training 48-96 hr after the original sensitization training, followed by treatment with the protein synthesis inhibitor anisomycin, LTS was disrupted. We also found that long-term (≥ 24 hr) facilitation (LTF) [6], which can be induced in the monosynaptic connection between Aplysia sensory and motor neurons in dissociated cell culture by multiple spaced pulses of the endogenous facilitatory transmitter serotonin (5-HT) [7, 8], could be eliminated by treating the synapses with one reminder pulse of 5-HT, followed by anisomycin, at 48 hr after the original training. Our results provide a simple model system for understanding the synaptic basis of reconsolidation.


Assuntos
Aplysia/fisiologia , Memória de Longo Prazo , Sinapses/fisiologia , Análise de Variância , Animais , Anisomicina/farmacologia , Aplysia/efeitos dos fármacos , Comportamento Animal , Células Cultivadas , Neurônios Motores/citologia , Neurônios Motores/efeitos dos fármacos , Inibidores da Síntese de Proteínas/farmacologia , Reflexo/efeitos dos fármacos , Reflexo/fisiologia , Células Receptoras Sensoriais/citologia , Células Receptoras Sensoriais/efeitos dos fármacos , Serotonina/farmacologia , Sinapses/efeitos dos fármacos
19.
Curr Biol ; 22(9): R302-4, 2012 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-22575467

RESUMO

Two recent studies illustrate the limits of a strictly molecular approach toward understanding learning and memory.


Assuntos
Comportamento , Cognição , Neurociências , Animais , Memória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...