Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Chem Biol ; 12(8): 1986-1992, 2017 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-28679043

RESUMO

MTH1 is a hydrolase responsible for sanitization of oxidized purine nucleoside triphosphates to prevent their incorporation into replicating DNA. Early tool compounds published in the literature inhibited the enzymatic activity of MTH1 and subsequently induced cancer cell death; however recent studies have questioned the reported link between these two events. Therefore, it is important to validate MTH1 as a cancer dependency with high quality chemical probes. Here, we present BAY-707, a substrate-competitive, highly potent and selective inhibitor of MTH1, chemically distinct compared to those previously published. Despite superior cellular target engagement and pharmacokinetic properties, inhibition of MTH1 with BAY-707 resulted in a clear lack of in vitro or in vivo anticancer efficacy either in mono- or in combination therapies. Therefore, we conclude that MTH1 is dispensable for cancer cell survival.


Assuntos
Enzimas Reparadoras do DNA/metabolismo , Sistemas de Liberação de Medicamentos , Morfolinas/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Monoéster Fosfórico Hidrolases/metabolismo , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Células CACO-2 , Células Cultivadas , Enzimas Reparadoras do DNA/antagonistas & inibidores , Ativação Enzimática/efeitos dos fármacos , Células HeLa , Hepatócitos/efeitos dos fármacos , Humanos , Células MCF-7 , Camundongos , Camundongos Nus , Microssomos Hepáticos/efeitos dos fármacos , Modelos Moleculares , Morfolinas/química , Neoplasias/fisiopatologia , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Pirimidinas/química , Pirimidinas/farmacologia , Ratos
2.
PLoS One ; 11(8): e0160658, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27494181

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) represents the most common form of pancreatic cancer with rising incidence in developing countries and overall 5-year survival rates of less than 5%. The most frequent mutations in PDAC are gain-of-function mutations in KRAS as well as loss-of-function mutations in p53. Both mutations have severe impacts on the metabolism of tumor cells. Many of these metabolic changes are mediated by transporters or channels that regulate the exchange of metabolites and ions between the intracellular compartment and the tumor microenvironment. In the study presented here, our goal was to identify novel transporters or channels that regulate oxidative phosphorylation (OxPhos) in PDAC in order to characterize novel potential drug targets for the treatment of these cancers. We set up a Seahorse Analyzer XF based siRNA screen and identified previously described as well as novel regulators of OxPhos. The siRNA that resulted in the greatest change in cellular oxygen consumption was targeting the KCNN4 gene, which encodes for the Ca2+-sensitive K+ channel KCa3.1. This channel has not previously been reported to regulate OxPhos. Knock-down experiments as well as the use of a small molecule inhibitor confirmed its role in regulating oxygen consumption, ATP production and cellular proliferation. Furthermore, PDAC cell lines sensitive to KCa3.1 inhibition were shown to express the channel protein in the plasma membrane as well as in the mitochondria. These differences in the localization of KCa3.1 channels as well as differences in the regulation of cellular metabolism might offer opportunities for targeted therapy in subsets of PDAC.


Assuntos
Carcinoma Ductal Pancreático/patologia , Regulação Neoplásica da Expressão Gênica , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Fosforilação Oxidativa , Neoplasias Pancreáticas/patologia , Apoptose , Carcinoma Ductal Pancreático/metabolismo , Proliferação de Células , Humanos , Neoplasias Pancreáticas/metabolismo , Transdução de Sinais , Células Tumorais Cultivadas
3.
Cancer Metab ; 3: 11, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26500770

RESUMO

BACKGROUND: Numerous studies have demonstrated that functional mitochondria are required for tumorigenesis, suggesting that mitochondrial oxidative phosphorylation (OXPHOS) might be a potential target for cancer therapy. In this study, we investigated the effects of BAY 87-2243, a small molecule that inhibits the first OXPHOS enzyme (complex I), in melanoma in vitro and in vivo. RESULTS: BAY 87-2243 decreased mitochondrial oxygen consumption and induced partial depolarization of the mitochondrial membrane potential. This was associated with increased reactive oxygen species (ROS) levels, lowering of total cellular ATP levels, activation of AMP-activated protein kinase (AMPK), and reduced cell viability. The latter was rescued by the antioxidant vitamin E and high extracellular glucose levels (25 mM), indicating the involvement of ROS-induced cell death and a dependence on glycolysis for cell survival upon BAY 87-2243 treatment. BAY 87-2243 significantly reduced tumor growth in various BRAF mutant melanoma mouse xenografts and patient-derived melanoma mouse models. Furthermore, we provide evidence that inhibition of mutated BRAF using the specific small molecule inhibitor vemurafenib increased the OXPHOS dependency of BRAF mutant melanoma cells. As a consequence, the combination of both inhibitors augmented the anti-tumor effect of BAY 87-2243 in a BRAF mutant melanoma mouse xenograft model. CONCLUSIONS: Taken together, our results suggest that complex I inhibition has potential clinical applications as a single agent in melanoma and also might be efficacious in combination with BRAF inhibitors in the treatment of patients with BRAF mutant melanoma.

4.
Biochem Pharmacol ; 92(1): 90-101, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25078786

RESUMO

Cancer cells are characterized by an increase in the rate of reactive oxygen species (ROS) production and an altered redox environment compared to normal cells. Furthermore, redox regulation and redox signaling play a key role in tumorigenesis and in the response to cancer therapeutics. ROS have contradictory roles in tumorigenesis, which has important implications for the development of potential anticancer therapies that aim to modulate cellular redox levels. ROS play a causal role in tumor development and progression by inducing DNA mutations, genomic instability, and aberrant pro-tumorigenic signaling. On the other hand, high levels of ROS can also be toxic to cancer cells and can potentially induce cell death. To balance the state of oxidative stress, cancer cells increase their antioxidant capacity, which strongly suggests that high ROS levels have the potential to actually block tumorigenesis. This fact makes pro-oxidant cancer therapy an interesting area of study. In this review, we discuss the controversial role of ROS in tumorigenesis and especially elaborate on the advantages of targeting ROS scavengers, hence the antioxidant capacity of cancer cells, and how this can be utilized for cancer therapeutics.


Assuntos
Antineoplásicos/uso terapêutico , Antioxidantes/farmacologia , Neoplasias/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/uso terapêutico , Comunicação Celular/fisiologia , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Estresse Oxidativo , Transdução de Sinais
5.
Elife ; 3: e02242, 2014 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-24843020

RESUMO

Recent epidemiological and laboratory-based studies suggest that the anti-diabetic drug metformin prevents cancer progression. How metformin diminishes tumor growth is not fully understood. In this study, we report that in human cancer cells, metformin inhibits mitochondrial complex I (NADH dehydrogenase) activity and cellular respiration. Metformin inhibited cellular proliferation in the presence of glucose, but induced cell death upon glucose deprivation, indicating that cancer cells rely exclusively on glycolysis for survival in the presence of metformin. Metformin also reduced hypoxic activation of hypoxia-inducible factor 1 (HIF-1). All of these effects of metformin were reversed when the metformin-resistant Saccharomyces cerevisiae NADH dehydrogenase NDI1 was overexpressed. In vivo, the administration of metformin to mice inhibited the growth of control human cancer cells but not those expressing NDI1. Thus, we have demonstrated that metformin's inhibitory effects on cancer progression are cancer cell autonomous and depend on its ability to inhibit mitochondrial complex I.DOI: http://dx.doi.org/10.7554/eLife.02242.001.


Assuntos
Carcinogênese , Complexo I de Transporte de Elétrons/efeitos dos fármacos , Metformina/farmacologia , Neoplasias/enzimologia , Linhagem Celular Tumoral , Humanos , Neoplasias/patologia
6.
J Clin Invest ; 124(1): 117-28, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24292713

RESUMO

Approximately 85% of lung cancers are non­small-cell lung cancers (NSCLCs), which are often diagnosed at an advanced stage and associated with poor prognosis. Currently, there are very few therapies available for NSCLCs due to the recalcitrant nature of this cancer. Mutations that activate the small GTPase KRAS are found in 20% to 30% of NSCLCs. Here, we report that inhibition of superoxide dismutase 1 (SOD1) by the small molecule ATN-224 induced cell death in various NSCLC cells, including those harboring KRAS mutations. ATN-224­dependent SOD1 inhibition increased superoxide, which diminished enzyme activity of the antioxidant glutathione peroxidase, leading to an increase in intracellular hydrogen peroxide (H(2)O(2)) levels. We found that ATN-224­induced cell death was mediated through H(2)O(2)-dependent activation of P38 MAPK and that P38 activation led to a decrease in the antiapoptotic factor MCL1, which is often upregulated in NSCLC. Treatment with both ATN-224 and ABT-263, an inhibitor of the apoptosis regulators BCL2/BCLXL, augmented cell death. Furthermore, we demonstrate that ATN-224 reduced tumor burden in a mouse model of NSCLC. Our results indicate that antioxidant inhibition by ATN-224 has potential clinical applications as a single agent, or in combination with other drugs, for the treatment of patients with various forms of NSCLC, including KRAS-driven cancers.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Molibdênio/farmacologia , Superóxido Dismutase/antagonistas & inibidores , Compostos de Anilina/farmacologia , Animais , Apoptose , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Adesão Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Humanos , Peróxido de Hidrogênio/metabolismo , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/patologia , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Sulfonamidas/farmacologia , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1 , Carga Tumoral/efeitos dos fármacos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
7.
Sci Signal ; 6(261): ra8, 2013 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-23386745

RESUMO

Proper regulation of keratinocyte differentiation within the epidermis and follicular epithelium is essential for maintenance of epidermal barrier function and hair growth. The signaling intermediates that regulate the morphological and genetic changes associated with epidermal and follicular differentiation remain poorly understood. We tested the hypothesis that reactive oxygen species (ROS) generated by mitochondria are an important regulator of epidermal differentiation by generating mice with a keratinocyte-specific deficiency in mitochondrial transcription factor A (TFAM), which is required for the transcription of mitochondrial genes encoding electron transport chain subunits. Ablation of TFAM in keratinocytes impaired epidermal differentiation and hair follicle growth and resulted in death 2 weeks after birth. TFAM-deficient keratinocytes failed to generate mitochondria-derived ROS, a deficiency that prevented the transmission of Notch and ß-catenin signals essential for epidermal differentiation and hair follicle development, respectively. In vitro keratinocyte differentiation was inhibited in the presence of antioxidants, and the decreased differentiation marker abundance in TFAM-deficient keratinocytes was partly rescued by application of exogenous hydrogen peroxide. These findings indicate that mitochondria-generated ROS are critical mediators of cellular differentiation and tissue morphogenesis.


Assuntos
Epiderme/metabolismo , Folículo Piloso/metabolismo , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Western Blotting , Cloreto de Cálcio/farmacologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Células Cultivadas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células Epidérmicas , Feminino , Folículo Piloso/citologia , Folículo Piloso/crescimento & desenvolvimento , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas de Grupo de Alta Mobilidade/metabolismo , Humanos , Peróxido de Hidrogênio/farmacologia , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Oxidantes/farmacologia , Receptores Notch/genética , Receptores Notch/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Fatores de Tempo , beta Catenina/genética , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...