Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Astrobiology ; 24(S1): S143-S163, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38498826

RESUMO

All known life on Earth inhabits environments that maintain conditions between certain extremes of temperature, chemical composition, energy availability, and so on (Chapter 6). Life may have emerged in similar environments elsewhere in the Solar System and beyond. The ongoing search for life elsewhere mainly focuses on those environments most likely to support life, now or in the past-that is, potentially habitable environments. Discussion of habitability is necessarily based on what we know about life on Earth, as it is our only example. This chapter gives an overview of the known and presumed requirements for life on Earth and discusses how these requirements can be used to assess the potential habitability of planetary bodies across the Solar System and beyond. We first consider the chemical requirements of life and potential feedback effects that the presence of life can have on habitable conditions, and then the planetary, stellar, and temporal requirements for habitability. We then review the state of knowledge on the potential habitability of bodies across the Solar System and exoplanets, with a particular focus on Mars, Venus, Europa, and Enceladus. While reviewing the case for the potential habitability of each body, we summarize the most prominent and impactful studies that have informed the perspective on where habitable environments are likely to be found.


Assuntos
Exobiologia , Meio Ambiente Extraterreno , Planeta Terra , Meio Ambiente Extraterreno/química , Planetas , Sistema Solar
2.
Astrobiology ; 24(S1): S4-S39, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38498816

RESUMO

The Astrobiology Primer 3.0 (ABP3.0) is a concise introduction to the field of astrobiology for students and others who are new to the field of astrobiology. It provides an entry into the broader materials in this supplementary issue of Astrobiology and an overview of the investigations and driving hypotheses that make up this interdisciplinary field. The content of this chapter was adapted from the other 10 articles in this supplementary issue and thus represents the contribution of all the authors who worked on these introductory articles. The content of this chapter is not exhaustive and represents the topics that the authors found to be the most important and compelling in a dynamic and changing field.


Assuntos
Exobiologia , Estudantes , Humanos , Exobiologia/educação
3.
Astrobiology ; 24(S1): S216-S227, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38498823

RESUMO

Although astrobiology is a relatively new field of science, the questions it seeks to answer (e.g., "What is life?" "What does life require?") have been investigated for millennia. In recent decades, formal programs dedicated specifically to the science of astrobiology have been organized at academic, governmental, and institutional scales. Constructing educational programs around this emerging science relies on input from broad expertise and backgrounds. Because of the interdisciplinary nature of this field, career pathways in astrobiology often begin in more specific fields such as astronomy, geology, or biology, and unlike many other sciences, typically involve substantial training outside one's primary discipline. The recent origin of astrobiology as a field of science has led to strong collaborations with education research in the development of astrobiology courses and offers a unique instructional laboratory for further pedagogical studies. This chapter is intended to support students, educators, and early career scientists by connecting them to materials and opportunities that the authors and colleagues have found advantageous. Annotated lists of relevant programs and resources are included as a series of appendices in the supplementary material.


Assuntos
Exobiologia , Estudantes , Humanos , Exobiologia/educação , Inquéritos e Questionários , Geologia
4.
Mol Ecol ; 30(13): 3068-3082, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32638451

RESUMO

Organism abundance is a critical parameter in ecology, but its estimation is often challenging. Approaches utilizing eDNA to indirectly estimate abundance have recently generated substantial interest. However, preliminary correlations observed between eDNA concentration and abundance in nature are typically moderate in strength with significant unexplained variation. Here, we apply a novel approach to integrate allometric scaling coefficients into models of eDNA concentration and organism abundance. We hypothesize that eDNA particle production scales nonlinearly with mass, with scaling coefficients < 1. Wild populations often exhibit substantial variation in individual body size distributions; we therefore predict that the distribution of mass across individuals within a population will influence population-level eDNA production rates. To test our hypothesis, we collected standardized body size distribution and mark-recapture abundance data using whole-lake experiments involving nine populations of brook trout. We correlated eDNA concentration with three metrics of abundance: density (individuals/ha), biomass (kg/ha) and allometrically scaled mass (ASM) (∑(individual mass0.73 )/ha). Density and biomass were both significantly positively correlated with eDNA concentration (adj. r2  = 0.59 and 0.63, respectively), but ASM exhibited improved model fit (adj. r2  = 0.78). We also demonstrate how estimates of ASM derived from eDNA samples in "unknown" systems can be converted to biomass or density estimates with additional size-structure data. Future experiments should empirically validate allometric scaling coefficients for eDNA production, particularly where substantial intraspecific size distribution variation exists. Incorporating allometric scaling may improve predictive models to the extent that eDNA concentration may become a reliable indicator of abundance in nature.


Assuntos
Lagos , Truta , Animais , Biomassa , Tamanho Corporal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...