Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 9: 659055, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34012965

RESUMO

Disruptions to developmental cell signaling pathways and transcriptional cascades have been implicated in tumor initiation, maintenance and progression. Resurgence of aberrant neurodevelopmental programs in the context of brain tumors highlights the numerous parallels that exist between developmental and oncologic mechanisms. A deeper understanding of how dysregulated developmental factors contribute to brain tumor oncogenesis and disease progression will help to identify potential therapeutic targets for these malignancies. In this review, we summarize the current literature concerning developmental signaling cascades and neurodevelopmentally-regulated transcriptional programs. We also examine their respective contributions towards tumor initiation, maintenance, and progression in both pediatric and adult brain tumors and highlight relevant differentiation therapies and putative candidates for prospective treatments.

2.
J Clin Invest ; 129(10): 4408-4418, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31498149

RESUMO

Reactive astrocytes are associated with every form of neurological injury. Despite their ubiquity, the molecular mechanisms controlling their production and diverse functions remain poorly defined. Because many features of astrocyte development are recapitulated in reactive astrocytes, we investigated the role of nuclear factor I-A (NFIA), a key transcriptional regulator of astrocyte development whose contributions to reactive astrocytes remain undefined. Here, we show that NFIA is highly expressed in reactive astrocytes in human neurological injury and identify unique roles across distinct injury states and regions of the CNS. In the spinal cord, after white matter injury (WMI), NFIA-deficient astrocytes exhibit defects in blood-brain barrier remodeling, which are correlated with the suppression of timely remyelination. In the cortex, after ischemic stroke, NFIA is required for the production of reactive astrocytes from the subventricular zone (SVZ). Mechanistically, NFIA directly regulates the expression of thrombospondin 4 (Thbs4) in the SVZ, revealing a key transcriptional node regulating reactive astrogenesis. Together, these studies uncover critical roles for NFIA in reactive astrocytes and illustrate how region- and injury-specific factors dictate the spectrum of reactive astrocyte responses.


Assuntos
Astrócitos/metabolismo , Astrócitos/patologia , Sistema Nervoso Central/lesões , Sistema Nervoso Central/metabolismo , Fatores de Transcrição NFI/metabolismo , Adulto , Animais , Barreira Hematoencefálica , Diferenciação Celular , Sistema Nervoso Central/patologia , Humanos , Camundongos , Camundongos Knockout , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Fatores de Transcrição NFI/deficiência , Fatores de Transcrição NFI/genética , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Remielinização , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia , Trombospondinas/genética , Trombospondinas/metabolismo
3.
Cell Rep ; 25(13): 3811-3827.e7, 2018 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-30590051

RESUMO

Notch is activated globally in pancreatic progenitors; however, for progenitors to differentiate into endocrine cells, they must escape Notch activation to express Neurogenin-3. Here, we find that the transcription factor nuclear factor I/A (NFIA) promotes endocrine development by regulating Notch ligand Dll1 trafficking. Pancreatic deletion of NFIA leads to cell fate defects, with increased duct and decreased endocrine formation, while ectopic expression promotes endocrine formation in mice and human pancreatic progenitors. NFIA-deficient mice exhibit dysregulation of trafficking-related genes including increased expression of Mib1, which acts to target Dll1 for endocytosis. We find that NFIA binds to the Mib1 promoter, with loss of NFIA leading to an increase in Dll1 internalization and enhanced Notch activation with rescue of the cell fate defects after Mib1 knockdown. This study reveals NFIA as a pro-endocrine factor in the pancreas, acting to repress Mib1, inhibit Dll1 endocytosis and thus promote escape from Notch activation.


Assuntos
Linhagem da Célula , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas de Membrana/metabolismo , Fatores de Transcrição NFI/metabolismo , Pâncreas/citologia , Receptores Notch/metabolismo , Animais , Proteínas de Ligação ao Cálcio , Endocitose , Regulação da Expressão Gênica , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Ligantes , Masculino , Camundongos Knockout , Pâncreas/metabolismo , Pâncreas/ultraestrutura , Transporte Proteico , Ubiquitina-Proteína Ligases/metabolismo
4.
Nat Rev Neurosci ; 19(7): 393-403, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29777182

RESUMO

Gliomas are heterogeneous tumours derived from glial cells and remain the deadliest form of brain cancer. Although the glioma stem cell sits at the apex of the cellular hierarchy, how it produces the vast cellular constituency associated with frank glioma remains poorly defined. We explore glioma tumorigenesis through the lens of glial development, starting with the neurogenic-gliogenic switch and progressing through oligodendrocyte and astrocyte differentiation. Beginning with the factors that influence normal glial linage progression and diversity, a pattern emerges that has useful parallels in the development of glioma and may ultimately provide targetable pathways for much-needed new therapeutics.


Assuntos
Neoplasias Encefálicas/fisiopatologia , Glioma/fisiopatologia , Animais , Astrócitos/fisiologia , Neoplasias Encefálicas/etiologia , Diferenciação Celular , Glioma/etiologia , Humanos , Células-Tronco Neurais/fisiologia , Oligodendroglia/fisiologia
5.
Nat Neurosci ; 20(11): 1520-1528, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28892058

RESUMO

Long-range enhancer interactions critically regulate gene expression, yet little is known about how their coordinated activities contribute to CNS development or how this may, in turn, relate to disease states. By examining the regulation of the transcription factor NFIA in the developing spinal cord, we identified long-range enhancers that recapitulate NFIA expression across glial and neuronal lineages in vivo. Complementary genetic studies found that Sox9-Brn2 and Isl1-Lhx3 regulate enhancer activity and NFIA expression in glial and neuronal populations. Chromatin conformation analysis revealed that these enhancers and transcription factors form distinct architectures within these lineages in the spinal cord. In glioma models, the glia-specific architecture is present in tumors, and these enhancers are required for NFIA expression and contribute to glioma formation. By delineating three-dimensional mechanisms of gene expression regulation, our studies identify lineage-specific chromatin architectures and associated enhancers that regulate cell fate and tumorigenesis in the CNS.


Assuntos
Carcinogênese/genética , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Fatores de Transcrição NFI/genética , Neuroglia/fisiologia , Animais , Sequência de Bases , Carcinogênese/metabolismo , Carcinogênese/patologia , Embrião de Galinha , Feminino , Glioma/metabolismo , Glioma/patologia , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Fatores de Transcrição NFI/biossíntese , Neuroglia/patologia , Medula Espinal/crescimento & desenvolvimento , Medula Espinal/metabolismo , Medula Espinal/patologia
6.
Neuron ; 93(2): 252-254, 2017 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-28103473

RESUMO

Long non-coding RNAs (lncRNAs) have been implicated in numerous developmental processes. In a technical and bioinformatics tour-de-force, He et al. (2017) provide critical insight into the dynamics of lncRNA expression, function, and mechanism during oligodendrocyte development and after injury.


Assuntos
Bainha de Mielina , RNA Longo não Codificante , Biologia Computacional , Masculino
7.
J Neurosci ; 36(47): 11904-11917, 2016 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-27881777

RESUMO

Lineage development is a stepwise process, governed by stage-specific regulatory factors and associated markers. Astrocytes are one of the principle cell types in the CNS and the stages associated with their development remain very poorly defined. To identify these stages, we performed gene-expression profiling on astrocyte precursor populations in the spinal cord, identifying distinct patterns of gene induction during their development that are strongly correlated with human astrocytes. Validation studies identified a new cohort of astrocyte-associated genes during development and demonstrated their expression in reactive astrocytes in human white matter injury (WMI). Functional studies on one of these genes revealed that mice lacking Asef exhibited impaired astrocyte differentiation during development and repair after WMI, coupled with compromised blood-brain barrier integrity in the adult CNS. These studies have identified distinct stages of astrocyte lineage development associated with human WMI and, together with our functional analysis of Asef, highlight the parallels between astrocyte development and their reactive counterparts associated with injury. SIGNIFICANCE STATEMENT: Astrocytes play a central role in CNS function and associated diseases. Yet the mechanisms that control their development remain poorly defined. Using the developing mouse spinal cord as a model system, we identify molecular changes that occur in developing astrocytes. These molecular signatures are strongly correlated with human astrocyte expression profiles and validation in mouse spinal cord identifies a host of new genes associated with the astrocyte lineage. These genes are present in reactive astrocytes in human white matter injury, and functional studies reveal that one of these genes, Asef, contributes to reactive astrocyte responses after injury. These studies identify distinct stages of astrocyte lineage development and highlight the parallels between astrocyte development and their reactive counterparts associated with injury.


Assuntos
Astrócitos/metabolismo , Astrócitos/patologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Regeneração da Medula Espinal/fisiologia , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Fatores de Troca de Nucleotídeo Guanina Rho , Fatores de Tempo
9.
Nat Commun ; 6: 7718, 2015 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-26212498

RESUMO

While microRNAs have emerged as an important component of gene regulatory networks, it remains unclear how microRNAs collaborate with transcription factors in the gene networks that determines neuronal cell fate. Here we show that in the developing spinal cord, the expression of miR-218 is directly upregulated by the Isl1-Lhx3 complex, which drives motor neuron fate. Inhibition of miR-218 suppresses the generation of motor neurons in both chick neural tube and mouse embryonic stem cells, suggesting that miR-218 plays a crucial role in motor neuron differentiation. Results from unbiased RISC-trap screens, in vivo reporter assays and overexpression studies indicated that miR-218 directly represses transcripts that promote developmental programs for interneurons. In addition, we found that miR-218 activity is required for Isl1-Lhx3 to effectively induce motor neurons and suppress interneuron fates. Together our results reveal an essential role of miR-218 as a downstream effector of the Isl1-Lhx3 complex in establishing motor neuron identity.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas com Homeodomínio LIM/genética , MicroRNAs/genética , Neurônios Motores/citologia , Tubo Neural/embriologia , Neurogênese/genética , Medula Espinal/embriologia , Fatores de Transcrição/genética , Animais , Embrião de Galinha , Eletroporação , Células HEK293 , Humanos , Proteínas com Homeodomínio LIM/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas , Tubo Neural/citologia , Reação em Cadeia da Polimerase em Tempo Real , Medula Espinal/citologia , Fatores de Transcrição/metabolismo , Regulação para Cima
10.
Nat Neurosci ; 17(10): 1322-9, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25151262

RESUMO

Lineage progression and diversification is regulated by the coordinated action of unique sets of transcription factors. Oligodendrocytes (OL) and astrocytes (AS) comprise the glial sub-lineages in the CNS, and the manner in which their associated regulatory factors orchestrate lineage diversification during development and disease remains an open question. Sox10 and NFIA are key transcriptional regulators of gliogenesis associated with OL and AS. We found that NFIA inhibited Sox10 induction of OL differentiation through direct association and antagonism of its function. Conversely, we found that Sox10 antagonized NFIA function and suppressed AS differentiation in mouse and chick systems. Using this developmental paradigm as a model for glioma, we found that this relationship similarly regulated the generation of glioma subtypes. Our results describe the antagonistic relationship between Sox10 and NFIA that regulates the balance of OL and AS fate during development and demonstrate for the first time, to the best of our knowledge, that the transcriptional processes governing glial sub-lineage diversification oversee the generation of glioma subtypes.


Assuntos
Glioma/classificação , Glioma/metabolismo , Neuroglia/metabolismo , Fatores de Transcrição SOXE/metabolismo , Animais , Animais Recém-Nascidos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Córtex Cerebral/citologia , Embrião de Galinha , Imunoprecipitação da Cromatina , Eletroporação , Embrião de Mamíferos , Glioma/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Homeodomínio/metabolismo , Camundongos , Proteína Básica da Mielina/genética , Proteína Básica da Mielina/metabolismo , Fatores de Transcrição NFI/genética , Fatores de Transcrição NFI/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neuroglia/efeitos dos fármacos , Fator de Transcrição 2 de Oligodendrócitos , Fatores de Transcrição SOXE/genética , Transfecção
11.
J Neurosci ; 33(33): 13560-8, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23946414

RESUMO

Contemporary views of tumorigenesis regard its inception as a convergence of genetic mutation and developmental context. Glioma is the most common and deadly malignancy in the CNS; therefore, understanding how regulators of glial development contribute to its formation remains a key question. Previously we identified nuclear factor I-A (NFIA) as a key regulator of developmental gliogenesis, while miR-223 has been shown to repress NFIA expression in other systems. Using this relationship as a starting point, we found that miR-223 can suppress glial precursor proliferation via repression of NFIA during chick spinal cord development. This relationship is conserved in glioma, as miR-223 and NFIA expression is negatively correlated in human glioma tumors, and the miR-223/NFIA axis suppresses tumorigenesis in a human glioma cell line. Subsequent analysis of NFIA function revealed that it directly represses p21 and is required for tumorigenesis in a mouse neural stem cell model of glioma. These studies represent the first characterization of miR-223/NFIA axis function in glioma and demonstrate that it is a conserved proliferative mechanism across CNS development and tumorigenesis.


Assuntos
Proliferação de Células , Transformação Celular Neoplásica/metabolismo , Glioma/metabolismo , MicroRNAs/metabolismo , Fatores de Transcrição NFI/metabolismo , Células-Tronco Neoplásicas/metabolismo , Animais , Transformação Celular Neoplásica/genética , Embrião de Galinha , Imunoprecipitação da Cromatina , Regulação Neoplásica da Expressão Gênica/fisiologia , Glioma/genética , Glioma/patologia , Humanos , Imuno-Histoquímica , Hibridização In Situ , Camundongos , MicroRNAs/genética , Fatores de Transcrição NFI/genética , Células-Tronco Neoplásicas/patologia , Neuroglia/metabolismo , Neuroglia/patologia , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise Serial de Tecidos , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Glia ; 61(9): 1518-32, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23840004

RESUMO

Developmental regulation of gliogenesis in the mammalian CNS is incompletely understood, in part due to a limited repertoire of lineage-specific genes. We used Aldh1l1-GFP as a marker for gliogenic radial glia and later-stage precursors of developing astrocytes and performed gene expression profiling of these cells. We then used this dataset to identify candidate transcription factors that may serve as glial markers or regulators of glial fate. Our analysis generated a database of developmental stage-related markers of Aldh1l1+ cells between murine embryonic day 13.5-18.5. Using these data we identify the bZIP transcription factor Nfe2l1 and demonstrate that it promotes glial fate under direct Sox9 regulatory control. Thus, this dataset represents a resource for identifying novel regulators of glial development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Isoenzimas/metabolismo , Fator 1 Relacionado a NF-E2/metabolismo , Neuroglia/metabolismo , Retinal Desidrogenase/metabolismo , Fatores de Transcrição SOX9/metabolismo , Medula Espinal/citologia , Fatores Etários , Família Aldeído Desidrogenase 1 , Animais , Diferenciação Celular , Células Cultivadas , Galinhas , Biologia Computacional , Eletroporação , Embrião de Mamíferos , Citometria de Fluxo , Perfilação da Expressão Gênica , Proteína Glial Fibrilar Ácida , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Isoenzimas/genética , Camundongos , Camundongos Transgênicos , Fator 1 Relacionado a NF-E2/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/classificação , Neurônios/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Retinal Desidrogenase/genética , Fatores de Transcrição SOX9/genética , Medula Espinal/embriologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
Ann Neurol ; 72(2): 224-33, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22807310

RESUMO

OBJECTIVE: Chronic demyelination can result in axonopathy and is associated with human neurological conditions such as multiple sclerosis (MS) in adults and cerebral palsy in infants. In these disorders, myelin regeneration is inhibited by impaired differentiation of oligodendrocyte progenitors into myelin-producing oligodendrocytes. However, regulatory factors relevant in human myelin disorders and in myelin regeneration remain poorly understood. Here we have investigated the role of the transcription factor nuclear factor IA (NFIA) in oligodendrocyte progenitor differentiation during developmental and regenerative myelination. METHODS: NFIA expression patterns in human neonatal hypoxic-ischemic encephalopathy (HIE) and MS as well as developmental expression in mice were evaluated. Functional studies during remyelination were performed using a lysolecithin model, coupled with lentiviral misexpression of NFIA. The role of NFIA during oligodendrocyte lineage development was characterized using chick and mouse models and in vitro culture of oligodendrocyte progenitors. Biochemical mechanism of NFIA function was evaluated using chromatin immunoprecipitation and reporter assays. RESULTS: NFIA is expressed in oligodendrocyte progenitors, but not differentiated oligodendrocytes during mouse embryonic development. Examination of NFIA expression in white matter lesions of human newborns with neonatal HIE, as well active MS lesions in adults, revealed that it is similarly expressed in oligodendrocyte progenitors and not oligodendrocytes. Functional studies indicate that NFIA is sufficient to suppress oligodendrocyte progenitor differentiation during adult remyelination and embryonic development through direct repression of myelin gene expression. INTERPRETATION: These studies suggest that NFIA participates in the control of oligodendrocyte progenitor differentiation and may contribute to the inhibition of remyelination in human myelin disorders.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Leucoencefalopatias/metabolismo , Leucoencefalopatias/patologia , Fatores de Transcrição NFI/metabolismo , Oligodendroglia/metabolismo , Proteína da Polipose Adenomatosa do Colo/metabolismo , Animais , Proteínas de Arabidopsis/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Córtex Cerebral/citologia , Imunoprecipitação da Cromatina , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Eletroporação , Embrião de Mamíferos , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Hipóxia-Isquemia Encefálica/metabolismo , Lactente , Recém-Nascido , Transferases Intramoleculares/metabolismo , Leucoencefalopatias/induzido quimicamente , Lisofosfatidilcolinas/toxicidade , Camundongos , Camundongos Transgênicos , Esclerose Múltipla/metabolismo , Proteína Básica da Mielina/metabolismo , Fatores de Transcrição NFI/genética , Oligodendroglia/efeitos dos fármacos , Medula Espinal/patologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Fatores de Tempo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
Neuron ; 74(1): 79-94, 2012 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-22500632

RESUMO

Transcriptional cascades that operate over the course of lineage development are fundamental mechanisms that control cellular differentiation. In the developing central nervous system (CNS), these mechanisms are well characterized during neurogenesis, but remain poorly defined during neural stem cell commitment to the glial lineage. NFIA is a transcription factor that plays a crucial role in the onset of gliogenesis; we found that its induction is regulated by the transcription factor Sox9 and that this relationship mediates the initiation of gliogenesis. Subsequently, Sox9 and NFIA form a complex and coregulate a set of genes induced after glial initiation. Functional studies revealed that a subset of these genes, Apcdd1 and Mmd2, perform key migratory and metabolic roles during astro-gliogenesis, respectively. In sum, these studies delineate a transcriptional regulatory cascade that operates during the initiation of gliogenesis and identifies a unique set of genes that regulate key aspects of astro-glial precursor physiology during development.


Assuntos
Diferenciação Celular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Fatores de Transcrição NFI/fisiologia , Neuroglia/citologia , Fatores de Transcrição SOX9/fisiologia , Animais , Linhagem da Célula/fisiologia , Sistema Nervoso Central/citologia , Sistema Nervoso Central/embriologia , Embrião de Galinha , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteínas de Membrana/fisiologia , Camundongos , Neuroglia/fisiologia , Organogênese/fisiologia , Células-Tronco/citologia , Células-Tronco/fisiologia , Transcrição Gênica
15.
Development ; 136(17): 2945-54, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19641016

RESUMO

PTF1-J is a trimeric transcription factor complex essential for generating the correct balance of GABAergic and glutamatergic interneurons in multiple regions of the nervous system, including the dorsal horn of the spinal cord and the cerebellum. Although the components of PTF1-J have been identified as the basic helix-loop-helix (bHLH) factor Ptf1a, its heterodimeric E-protein partner, and Rbpj, no neural targets are known for this transcription factor complex. Here we identify the neuronal differentiation gene Neurog2 (Ngn2, Math4A, neurogenin 2) as a direct target of PTF1-J. A Neurog2 dorsal neural tube enhancer localized 3' of the Neurog2 coding sequence was identified that requires a PTF1-J binding site for dorsal activity in mouse and chick neural tube. Gain and loss of Ptf1a function in vivo demonstrate its role in Neurog2 enhancer activity. Furthermore, chromatin immunoprecipitation from neural tube tissue demonstrates that Ptf1a is bound to the Neurog2 enhancer. Thus, Neurog2 expression is directly regulated by the PTF1-J complex, identifying Neurog2 as the first neural target of Ptf1a and revealing a bHLH transcription factor cascade functioning in the specification of GABAergic neurons in the dorsal spinal cord and cerebellum.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Medula Espinal/embriologia , Fatores de Transcrição/metabolismo , Animais , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Sítios de Ligação , Diferenciação Celular/fisiologia , Embrião de Galinha , Embrião de Mamíferos/anatomia & histologia , Embrião de Mamíferos/fisiologia , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Dados de Sequência Molecular , Complexos Multiproteicos/metabolismo , Proteínas do Tecido Nervoso/genética , Transdução de Sinais/fisiologia , Medula Espinal/citologia , Medula Espinal/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica
16.
Genes Dev ; 22(2): 166-78, 2008 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-18198335

RESUMO

Neural networks are balanced by inhibitory and excitatory neuronal activity. The formation of these networks is initially generated through neuronal subtype specification controlled by transcription factors. The basic helix-loop-helix (bHLH) transcription factor Ptf1a is essential for the generation of GABAergic inhibitory neurons in the dorsal spinal cord, cerebellum, and retina. The transcription factor Rbpj is a transducer of the Notch signaling pathway that functions to maintain neural progenitor cells. Here we demonstrate Ptf1a and Rbpj interact in a complex that is required in vivo for specification of the GABAergic neurons, a function that cannot be substituted by the classical form of the bHLH heterodimer with E-protein or Notch signaling through Rbpj. We show that a mutant form of Ptf1a without the ability to bind Rbpj, while retaining its ability to interact with E-protein, is incapable of inducing GABAergic (Pax2)- and suppressing glutamatergic (Tlx3)-expressing cells in the chick and mouse neural tube. Moreover, we use an Rbpj conditional mutation to demonstrate that Rbpj function is essential for GABAergic specification, and that this function is independent of the Notch signaling pathway. Together, these findings demonstrate the requirement for a Ptf1a-Rbpj complex in controlling the balanced formation of inhibitory and excitatory neurons in the developing spinal cord, and point to a novel Notch-independent function for Rbpj in nervous system development.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Neurônios/fisiologia , Receptores Notch/fisiologia , Fatores de Transcrição/fisiologia , Ácido gama-Aminobutírico/biossíntese , Animais , Cerebelo/citologia , Embrião de Galinha , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/fisiologia , Camundongos , Mutação , Transdução de Sinais , Medula Espinal/citologia , Transfecção
17.
Development ; 132(24): 5461-9, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16291784

RESUMO

Mutations in the human and mouse PTF1A/Ptf1a genes result in permanent diabetes mellitus and cerebellar agenesis. We show that Ptf1a is present in precursors to GABAergic neurons in spinal cord dorsal horn as well as the cerebellum. A null mutation in Ptf1a reveals its requirement for the dorsal horn GABAergic neurons. Specifically, Ptf1a is required for the generation of early-born (dI4, E10.5) and late-born (dIL(A), E12.5) dorsal interneuron populations identified by homeodomain factors Lhx1/5 and Pax2. Furthermore, in the absence of Ptf1a, the dI4 dorsal interneurons trans-fate to dI5 (Lmx1b(+)), and the dIL(A) to dIL(B) (Lmx1b(+);Tlx3(+)). This mis-specification of neurons results in a complete loss of inhibitory GABAergic neurons and an increase in the excitatory glutamatergic neurons in the dorsal horn of the spinal cord by E16.5. Thus, Ptf1a function is essential for GABAergic over glutamatergic neuronal cell fates in the developing spinal cord, and provides an important genetic link between inhibitory and excitatory interneuron development.


Assuntos
Neurônios/fisiologia , Células do Corno Posterior/metabolismo , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular/fisiologia , Linhagem da Célula , Cerebelo/embriologia , Cerebelo/metabolismo , Ácido Glutâmico/fisiologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Interneurônios/citologia , Interneurônios/fisiologia , Camundongos , Camundongos Mutantes , Mutação , Neurônios/citologia , Fator de Transcrição PAX2/genética , Fator de Transcrição PAX2/metabolismo , Células do Corno Posterior/citologia , Células do Corno Posterior/embriologia , Fatores de Transcrição/genética , Ácido gama-Aminobutírico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...