Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1139, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326372

RESUMO

Optically-induced changes in membrane capacitance may regulate neuronal activity without requiring genetic modifications. Previously, they mainly relied on sudden temperature jumps due to light absorption by membrane-associated nanomaterials or water. Yet, nanomaterial targeting or the required high infrared light intensities obstruct broad applicability. Now, we propose a very versatile approach: photolipids (azobenzene-containing diacylglycerols) mediate light-triggered cellular de- or hyperpolarization. As planar bilayer experiments show, the respective currents emerge from millisecond-timescale changes in bilayer capacitance. UV light changes photolipid conformation, which awards embedding plasma membranes with increased capacitance and evokes depolarizing currents. They open voltage-gated sodium channels in cells, generating action potentials. Blue light reduces the area per photolipid, decreasing membrane capacitance and eliciting hyperpolarization. If present, mechanosensitive channels respond to the increased mechanical membrane tension, generating large depolarizing currents that elicit action potentials. Membrane self-insertion of administered photolipids and focused illumination allows cell excitation with high spatiotemporal control.


Assuntos
Neurônios , Raios Ultravioleta , Potenciais de Ação , Potenciais da Membrana , Membrana Celular , Neurônios/fisiologia
2.
bioRxiv ; 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37645959

RESUMO

Optically-induced changes in membrane capacitance may regulate neuronal activity without requiring genetic modifications. Previously, they mainly relied on sudden temperature jumps due to light absorption by membrane-associated nanomaterials or water. Yet, nanomaterial targeting or the required high infrared light intensities obstruct broad applicability. Now, we propose a very versatile approach: photolipids (azobenzene-containing diacylglycerols) mediate light-triggered cellular de- or hyperpolarization. As planar bilayer experiments show, the respective currents emerge from millisecond-timescale changes in bilayer capacitance. UV light changes photolipid conformation, which awards embedding plasma membranes with increased capacitance and evokes depolarizing currents. They open voltage-gated sodium channels in cells, generating action potentials. Blue light reduces the area per photolipid, decreasing membrane capacitance and eliciting hyperpolarization. If present, mechanosensitive channels respond to the increased mechanical membrane tension, generating large depolarizing currents that elicit action potentials. Membrane self-insertion of administered photolipids and focused illumination allows cell excitation with high spatiotemporal control.

3.
Dalton Trans ; 51(29): 11086-11097, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35796232

RESUMO

Multinuclear tungsten complexes are intriguing candidates for new contrast media that can provide substantial improvements in CT imaging diagnostics. Herein, we present a ligand strategy, based on amino acids, and mono- and disubstituted EDTA derivatives, that enables the development of stable complexes with high tungsten content and reasonably low osmolality. Accordingly, a series of neutral and monoanionic di-µ-sulfido W(V) dimers have been synthesized via a convenient procedure utilizing microwave heating in combination with ion-pair HPLC reaction monitoring. The compounds were characterized in detail by various techniques, including ESI-HRMS, NMR spectroscopy, HPLC, elemental analysis, and X-ray crystallography. The aqueous stability of the complexes under physiologically relevant conditions, and during heat sterilization was also examined as an initial assessment of their potential applicability as radiocontrast agents. Monoanionic complexes featuring monosubstituted EDTA derivatives have demonstrated high stability, while producing a lower number of ions in solution (resulting in lower osmolality) in comparison to their bis-anionic EDTA counterparts. Nevertheless, they exhibited insufficient water solubility for application as intravascular contrast agents. However, our study showed that aqueous solubility of this type of complexes can be tuned by small modifications in the ligand structure.


Assuntos
Meios de Contraste , Tungstênio , Meios de Contraste/química , Cristalografia por Raios X , Ácido Edético , Ligantes , Modelos Moleculares , Polímeros , Enxofre , Tomografia Computadorizada por Raios X , Tungstênio/química , Água/química
4.
Int J Mol Sci ; 23(7)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35408861

RESUMO

Lipid domains less than 200 nm in size may form a scaffold, enabling the concerted function of plasma membrane proteins. The size-regulating mechanism is under debate. We tested the hypotheses that large values of spontaneous monolayer curvature are incompatible with micrometer-sized domains. Here, we used the transition of photoswitchable lipids from their cylindrical conformation to a conical conformation to increase the negative curvature of a bilayer-forming lipid mixture. In contrast to the hypothesis, pre-existing micrometer-sized domains did not dissipate in our planar bilayers, as indicated by fluorescence images and domain mobility measurements. Elasticity theory supports the observation by predicting the zero free energy gain for splitting large domains into smaller ones. It also indicates an alternative size-determining mechanism: The cone-shaped photolipids reduce the line tension associated with lipid deformations at the phase boundary and thus slow down the kinetics of domain fusion. The competing influence of two approaching domains on the deformation of the intervening lipids is responsible for the kinetic fusion trap. Our experiments indicate that the resulting local energy barrier may restrict the domain size in a dynamic system.


Assuntos
Bicamadas Lipídicas , Modelos Químicos , Elasticidade , Cinética , Conformação Molecular
5.
J Photochem Photobiol B ; 224: 112320, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34600201

RESUMO

Membrane proteins can be regulated by alterations in material properties intrinsic to the hosting lipid bilayer. Here, we investigated whether the reversible photoisomerization of bilayer-embedded diacylglycerols (OptoDArG) with two azobenzene-containing acyl chains may trigger such regulatory events. We observed an augmented open probability of the mechanosensitive model channel gramicidin A (gA) upon photoisomerizing OptoDArG's acyl chains from trans to cis: integral planar bilayer conductance brought forth by hundreds of simultaneously conducting gA dimers increased by typically >50% - in good agreement with the observed increase in single-channel lifetime. Further, (i) increments in the electrical capacitance of planar lipid bilayers and protrusion length of aspirated giant unilamellar vesicles into suction pipettes, as well as (ii) changes of small-angle X-ray scattering of multilamellar vesicles indicated that spontaneous curvature, hydrophobic thickness, and bending elasticity decreased upon switching from trans- to cis-OptoDArG. Our bilayer elasticity model for gA supports the causal relationship between changes in gA activity and bilayer material properties upon photoisomerization. Thus, we conclude that photolipids are deployable for converting bilayers of potentially diverse origins into light-gated actuators for mechanosensitive proteins.


Assuntos
Gramicidina/química , Canais Iônicos/efeitos da radiação , Luz , Bicamadas Lipídicas/efeitos da radiação , Canais Iônicos/química , Isomerismo , Bicamadas Lipídicas/química , Proteínas de Membrana/química , Espalhamento a Baixo Ângulo , Difração de Raios X
6.
Phys Rev Lett ; 124(10): 108102, 2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-32216409

RESUMO

Lipid rafts serve as anchoring platforms for membrane proteins. Thus far they escaped direct observation by light microscopy due to their small size. Here we used differently colored dyes as reporters for the registration of both ordered and disordered lipids from the two leaves of a freestanding bilayer. Photoswitchable lipids dissolved or reformed the domains. Measurements of domain mobility indicated the presence of 120 nm wide ordered and 40 nm wide disordered domains. These sizes are in line with the predicted roles of line tension and membrane undulation as driving forces for alignment.


Assuntos
Lipídeos de Membrana/administração & dosagem , Microdomínios da Membrana/química , Colesterol/química , Colesterol/metabolismo , Diglicerídeos/química , Diglicerídeos/metabolismo , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Microdomínios da Membrana/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Microscopia Confocal/métodos , Modelos Químicos , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Espectrometria de Fluorescência/métodos
7.
Anal Chem ; 91(17): 11367-11373, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31380630

RESUMO

We present 1D and 2D NMR experiments that provide in situ insights into photoinduced isomerizations. Irradiation during the mixing period of an exchange spectroscopy (EXSY) experiment leads to characteristic cross peaks in 2D spectra. The phototriggered exchange of magnetization occurring in photoswitchable (Z)- and (E)-isomers of three selected azo compounds provides information on the dynamic E/Z equilibria. We report the dependence of the diagonal-to-cross-peak ratio on concentration, light intensity, and mixing time. In analogy to exchange spectroscopy, this ratio mirrors the efficiency of light induced molecular transformations. Furthermore, we present a time-saving 1D version and a combined light/phase cycle scheme for enhanced detectability of photoinduced changes in the spectrum. This insight into light-induced structural changes is highly suited to study macromolecules, in which photoswitchable units trigger conformational changes.

8.
Chem Sci ; 10(9): 2837-2842, 2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30997005

RESUMO

Lipid-gated TRPC channels are highly expressed in cardiovascular and neuronal tissues. Exerting precise pharmacological control over their activity in native cells is expected to serve as a basis for the development of novel therapies. Here we report on a new photopharmacological tool that enables manipulation of TRPC3 channels by light, in a manner independent of lipid metabolism and with higher temporal precision than lipid photopharmacology. Using the azobenzene photoswitch moiety, we modified GSK1702934A to generate light-controlled TRPC agonists. We obtained one light-sensitive molecule (OptoBI-1) that allows us to exert efficient, light-mediated control over TRPC3 activity and the associated cellular Ca2+ signaling. OptoBI-1 enabled high-precision, temporal control of TRPC3-linked cell functions such as neuronal firing and endothelial Ca2+ transients. With these findings, we introduce a novel photopharmacological strategy to control native TRPC conductances.

9.
Cell Calcium ; 79: 27-34, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30798155

RESUMO

Mutation of a single residue within the recently identified lipid (diacylglycerol) recognition window of TRPC3 (G652A) was found to abolish channel activation via endogenous lipid mediators while retaining sensitivity to the non-lipid activator GSK1702934A (abb. GSK). The mechanism of this change in chemical sensing by TRPC3 was analysed by whole-cell and single channel electrophysiology as well as Ca2+ imaging. Currents initiated by GSK or the structural (benzimidazole) analog BI-2 were significantly larger in cells expressing the G652A mutant as compared to wild type (WT) channels. Whole cell patch-clamp experiments revealed that enhanced sensitivity to benzimidazoles was not due to augmented potency but reflected enhanced efficacy of benzimidazoles. Single channel analysis demonstrated that neither unitary conductance nor I-V characteristics were altered by the G652A mutation, precluding altered pore architecture as the basis of enhanced efficacy. These experiments uncovered a distinct gating pattern of BI-2-activated G652A mutant channels, featuring a unique, long-lived open state. Moreover, G652A mutant channels lacked PLC/diacylglycerol mediated cross-desensitization for GSK activation as typically observed for TRPC3. Lack of desensitization in G652A channels enabled large GSK/BI-2-induced Ca2+ signals in conditions that fully desensitized TRPC3 WT channels. We demonstrate that the lipid-recognition window of TRPC3 determines both sensitivity to lipid mediators and chemical gating by benzimidazoles. TRPC3 mutations within this lipid interaction site are suggested as a basis for chemogenetic targeting of TRPC3-signaling.


Assuntos
Benzimidazóis/farmacologia , Diglicerídeos/genética , Mutação Puntual/genética , Canais de Cátion TRPC/genética , Canais de Cátion TRPC/metabolismo , Cálcio/metabolismo , Células Cultivadas , Células HEK293 , Humanos , Transdução de Sinais/efeitos dos fármacos
10.
Talanta ; 188: 107-110, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30029352

RESUMO

The arsenic speciation was determined in macrofungi of the Ramaria genus with HPLC coupled to inductively coupled plasma mass spectrometry. Besides arsenic species that are already known for macrofungi, like arsenobetaine or arsenocholine, two compounds that were only known from marine samples so far (trimethylarsoniopropanate and dimethylarsinoylacetate) were found for the first time in a terrestrial sample. An unknown arsenical was isolated and identified as homoarsenocholine. This could be a key intermediate for further elucidation of the biotransformation mechanisms of arsenic.


Assuntos
Arsenicais/isolamento & purificação , Acetatos/química , Acetatos/isolamento & purificação , Arsenicais/química , Basidiomycota/química
11.
Nat Chem Biol ; 14(4): 396-404, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29556099

RESUMO

Transient receptor potential canonical (TRPC) channels TRPC3, TRPC6 and TRPC7 are able to sense the lipid messenger diacylglycerol (DAG). The DAG-sensing and lipid-gating processes in these ion channels are still unknown. To gain insights into the lipid-sensing principle, we generated a DAG photoswitch, OptoDArG, that enabled efficient control of TRPC3 by light. A structure-guided mutagenesis screen of the TRPC3 pore domain unveiled a single glycine residue behind the selectivity filter (G652) that is exposed to lipid through a subunit-joining fenestration. Exchange of G652 with larger residues altered the ability of TRPC3 to discriminate between different DAG molecules. Light-controlled activation-deactivation cycling of TRPC3 channels by an OptoDArG-mediated optical 'lipid clamp' identified pore domain fenestrations as pivotal elements of the channel´s lipid-sensing machinery. We provide evidence for a novel concept of lipid sensing by TRPC channels based on a lateral fenestration in the pore domain that accommodates lipid mediators to control gating.


Assuntos
Ativação do Canal Iônico , Lipídeos/química , Canais de Cátion TRPC/química , Animais , Cálcio/química , Glicina/química , Células HEK293 , Humanos , Cinética , Luz , Mutagênese , Mutação , Óptica e Fotônica , Fotoquímica , Ligação Proteica , Ratos , Transdução de Sinais , Canais de Cátion TRPV/química
12.
Synlett ; 28(6): 695-700, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28413263

RESUMO

Upon controlled microwave heating and using cyanuric chloride as a coupling reagent, an efficient amidation procedure for the synthesis of 1,3-dihydro-2H-benzo[d]imidazol-2-one-based agonists of TRPC3/6 ion channels has been developed. Compared to the few conventional protocols, a drastic reduction in processing time from ca. 2 days down to 10 minutes was achieved accompanied by significantly improved product yields. The robustness of the method was confirmed by 18 additional examples including aromatic, aliphatic, and heterocyclic amines and acids. The obtained agonists were screened for biological activity at 1 µM concentration and few structure-activity relations have been established.

13.
Sci China Life Sci ; 59(8): 802-10, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27430887

RESUMO

Photouncaging of second messengers has been successfully employed to gain mechanistic insight of cellular signaling pathways. One of the most enigmatic processes of ion channel regulation is lipid recognition and lipid-gating of TRPC channels, which represents pivotal mechanisms of cellular Ca(2+) homeostasis. Recently, optopharmacological tools including caged lipid mediators became available, enabling an unprecedented level of temporal and spatial control of the activating lipid species within a cellular environment. Here we tested a commonly used caged ligand approach for suitability to investigate TRPC signaling at the level of membrane conductance and cellular Ca(2+) handling. We report a specific photouncaging artifact that is triggered by the cage structure coumarin at UV illumination. Electrophysiological characterization identified a light-dependent membrane effect of coumarin. UV light (340 nm) as used for photouncaging, initiated a membrane conductance specifically in the presence of coumarin as low as 30 µmol L(-1) concentrations. This conductance masked the TRPC3 conductance evoked by photouncaging, while TRPC-mediated cellular Ca(2+) responses were largely preserved. The observed light-induced membrane effects of the released caging moiety may well interfere with certain cellular functions, and prompt caution in using coumarin-caged second messengers in cellular studies.


Assuntos
Cálcio/metabolismo , Cumarínicos/química , Lipídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Canais de Cátion TRPC/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/efeitos da radiação , Diglicerídeos/química , Diglicerídeos/farmacologia , Células HEK293 , Humanos , Imidazóis/farmacologia , Lipídeos/química , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/efeitos da radiação , Microscopia de Fluorescência , Técnicas de Patch-Clamp , Fotólise/efeitos da radiação , Transdução de Sinais/efeitos da radiação , Canais de Cátion TRPC/genética , Raios Ultravioleta
14.
Eur J Heart Fail ; 18(8): 987-97, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27135883

RESUMO

AIMS: Heart failure with preserved ejection fraction (HFpEF) is increasingly common, but the underlying cellular mechanisms are not well understood. We investigated cardiomyocyte function and the role of SEA0400, an Na(+) /Ca(2+) exchanger (NCX) inhibitor in a rat model of chronic kidney disease (CKD) with HFpEF. METHODS AND RESULTS: Male Wistar rats were subjected to subtotal nephrectomy (NXT) or sham operation (Sham). After 8 and 24 weeks, in vivo (haemodynamics, echocardiography) and in vitro function (LV cardiomyocyte cell shortening (CS), and Ca(2+) transients (CaT)) were determined without and with SEA0400. In a subgroup of rats, SEA0400 or vehicle was given p.o. (1 mg/kg b.w.) between week 8 and 24. NXT resulted in stable compensated CKD and HFpEF [hypertrophied left ventricle, prolonged LV isovolumetric relaxation constant TAU (IVRc TAU), elevated end diastolic pressure (EDP), increased lung weight (pulmonary congestion), and preserved LV systolic function (EF, dP/dt)]. In NXT cardiomyocytes, the amplitude of CS and CaT were unchanged but relaxation and CaT decay were progressively prolonged at 8 and 24 weeks vs. Sham, individually correlating with diastolic dysfunction in vivo. NCX forward mode activity (caffeine response) was progressively reduced, while NCX protein expression was up-regulated, suggesting increased NCX reverse mode activity in NXT. SEA0400 acutely improved relaxation in NXT in vivo and in cardiomyocytes and improved cardiac remodelling and diastolic function when given chronically. CONCLUSIONS: This model of renal HFpEF is associated with slowed relaxation of LV cardiomyocytes. Treatment with SEA0400 improved cardiomyocyte function, remodelling, and HFpEF.


Assuntos
Compostos de Anilina/farmacologia , Insuficiência Cardíaca/fisiopatologia , Miócitos Cardíacos/efeitos dos fármacos , Éteres Fenílicos/farmacologia , Insuficiência Renal Crônica/fisiopatologia , Trocador de Sódio e Cálcio/antagonistas & inibidores , Volume Sistólico , Animais , Cafeína/farmacologia , Cálcio/metabolismo , Estimulantes do Sistema Nervoso Central/farmacologia , Ecocardiografia , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/diagnóstico por imagem , Hipertrofia Ventricular Esquerda/complicações , Hipertrofia Ventricular Esquerda/diagnóstico por imagem , Hipertrofia Ventricular Esquerda/fisiopatologia , Masculino , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Ratos , Ratos Wistar , Insuficiência Renal Crônica/complicações
15.
Free Radic Biol Med ; 90: 59-74, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26577177

RESUMO

Peripheral leukocytes aggravate brain damage by releasing cytotoxic mediators that compromise blood-brain barrier function. One of the oxidants released by activated leukocytes is hypochlorous acid (HOCl) that is formed via the myeloperoxidase-H2O2-chloride system. The reaction of HOCl with the endogenous plasmalogen pool of brain endothelial cells results in the generation of 2-chlorohexadecanal (2-ClHDA), a toxic, lipid-derived electrophile that induces blood-brain barrier dysfunction in vivo. Here, we synthesized an alkynyl-analog of 2-ClHDA, 2-chlorohexadec-15-yn-1-al (2-ClHDyA) to identify potential protein targets in the human brain endothelial cell line hCMEC/D3. Similar to 2-ClHDA, 2-ClHDyA administration reduced cell viability/metabolic activity, induced processing of pro-caspase-3 and PARP, and led to endothelial barrier dysfunction at low micromolar concentrations. Protein-2-ClHDyA adducts were fluorescently labeled with tetramethylrhodamine azide (N3-TAMRA) by 1,3-dipolar cycloaddition in situ, which unveiled a preferential accumulation of 2-ClHDyA adducts in mitochondria, the Golgi, endoplasmic reticulum, and endosomes. Thirty-three proteins that are subject to 2-ClHDyA-modification in hCMEC/D3 cells were identified by mass spectrometry. Identified proteins include cytoskeletal components that are central to tight junction patterning, metabolic enzymes, induction of the oxidative stress response, and electrophile damage to the caveolar/endosomal Rab machinery. A subset of the targets was validated by a combination of N3-TAMRA click chemistry and specific antibodies by fluorescence microscopy. This novel alkyne analog is a valuable chemical tool to identify cellular organelles and protein targets of 2-ClHDA-mediated damage in settings where myeloperoxidase-derived oxidants may play a disease-propagating role.


Assuntos
Aldeídos/metabolismo , Alcinos/metabolismo , Encéfalo/metabolismo , Células Endoteliais/metabolismo , Alquilação , Células Cultivadas , Feminino , Humanos , Proteínas/metabolismo
16.
Chemistry ; 21(11): 4368-76, 2015 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-25655090

RESUMO

One of the rare alternative reagents for the reduction of carbon-carbon double bonds is diimide (HN=NH), which can be generated in situ from hydrazine hydrate (N2H4⋅H2O) and O2. Although this selective method is extremely clean and powerful, it is rarely used, as the rate-determining oxidation of hydrazine in the absence of a catalyst is relatively slow using conventional batch protocols. A continuous high-temperature/high-pressure methodology dramatically enhances the initial oxidation step, at the same time allowing for a safe and scalable processing of the hazardous reaction mixture. Simple alkenes can be selectively reduced within 10-20 min at 100-120 °C and 20 bar O2 pressure. The development of a multi-injection reactor platform for the periodic addition of N2H4⋅H2O enables the reduction of less reactive olefins even at lower reaction temperatures. This concept was utilized for the highly selective reduction of artemisinic acid to dihydroartemisinic acid, the precursor molecule for the semisynthesis of the antimalarial drug artemisinin. The industrially relevant reduction was achieved by using four consecutive liquid feeds (of N2H4⋅H2O) and residence time units resulting in a highly selective reduction within approximately 40 min at 60 °C and 20 bar O2 pressure, providing dihydroartemisinic acid in ≥93% yield and ≥95% selectivity.


Assuntos
Antimaláricos/química , Antimaláricos/síntese química , Artemisininas/química , Artemisininas/uso terapêutico , Estrutura Molecular
17.
Biochem Pharmacol ; 93(4): 470-81, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25576489

RESUMO

Hypochlorous acid added as reagent or generated by the myeloperoxidase (MPO)-H2O2-Cl(-) system oxidatively modifies brain ether-phospholipids (plasmalogens). This reaction generates a sn2-acyl-lysophospholipid and chlorinated fatty aldehydes. 2-Chlorohexadecanal (2-ClHDA), a prototypic member of chlorinated long-chain fatty aldehydes, has potent neurotoxic potential by inflicting blood-brain barrier (BBB) damage. During earlier studies we could show that the dihydrochalcone-type polyphenol phloretin attenuated 2-ClHDA-induced BBB dysfunction. To clarify the underlying mechanism(s) we now investigated the possibility of covalent adduct formation between 2-ClHDA and phloretin. Coincubation of 2-ClHDA and phloretin in phosphatidylcholine liposomes revealed a half-life of 2-ClHDA of approx. 120min, decaying at a rate of 5.9×10(-3)min(-1). NMR studies and enthalpy calculations suggested that 2-ClHDA-phloretin adduct formation occurs via electrophilic aromatic substitution followed by hemiacetal formation on the A-ring of phloretin. Adduct characterization by high-resolution mass spectroscopy confirmed these results. In contrast to 2-ClHDA, the covalent 2-ClHDA-phloretin adduct was without adverse effects on MTT reduction (an indicator for metabolic activity), cellular adenine nucleotide content, and barrier function of brain microvascular endothelial cells (BMVEC). Of note, 2-ClHDA-phloretin adduct formation was also observed in BMVEC cultures. Intraperitoneal application and subsequent GC-MS analysis of brain lipid extracts revealed that phloretin is able to penetrate the BBB of C57BL/6J mice. Data of the present study indicate that phloretin scavenges 2-ClHDA, thereby attenuating 2-ClHDA-mediated brain endothelial cell dysfunction. We here identify a detoxification pathway for a prototypic chlorinated fatty aldehyde (generated via the MPO axis) that compromises BBB function in vitro and in vivo.


Assuntos
Aldeídos/metabolismo , Barreira Hematoencefálica/metabolismo , Endotélio Vascular/metabolismo , Floretina/metabolismo , Plasmalogênios/metabolismo , Aldeídos/química , Aldeídos/farmacologia , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Células Cultivadas , Endotélio Vascular/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Floretina/química , Floretina/farmacologia , Plasmalogênios/química , Plasmalogênios/farmacologia , Ovinos , Suínos
18.
Cardiovasc Res ; 106(1): 163-73, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25631581

RESUMO

AIM: TRPC3 is a non-selective cation channel, which forms a Ca2+ entry pathway involved in cardiac remodelling. Our aim was to analyse acute electrophysiological and contractile consequences of TRPC3 activation in the heart. METHODS AND RESULTS: We used a murine model of cardiac TRPC3 overexpression and a novel TRPC3 agonist, GSK1702934A, to uncover (patho)physiological functions of TRPC3. GSK1702934A induced a transient, non-selective conductance and prolonged action potentials in TRPC3-overexpressing myocytes but lacked significant electrophysiological effects in wild-type myocytes. GSK1702934A transiently enhanced contractility and evoked arrhythmias in isolated Langendorff hearts from TRPC3-overexpressing but not wild-type mice. Interestingly, pro-arrhythmic effects outlasted TRPC3 current activation, were prevented by enhanced intracellular Ca2+ buffering, and suppressed by the NCX inhibitor 3',4'-dichlorobenzamil hydrochloride. GSK1702934A substantially promoted NCX currents in TRPC3-overexpressing myocytes. The TRPC3-dependent electrophysiologic, pro-arrhythmic, and inotropic actions of GSK1702934A were mimicked by angiotensin II (AngII). Immunocytochemistry demonstrated colocalization of TRPC3 with NCX1 and disruption of local interaction upon channel activation by either GSK1702934A or AngII. CONCLUSION: Cardiac TRPC3 mediates Ca2+ and Na+ entry in proximity of NCX1, thereby elevating cellular Ca2+ levels and contractility. Excessive activation of TRPC3 is associated with transient cellular Ca2+ overload, spatial uncoupling between TRPC3 and NCX1, and arrhythmogenesis. We propose TRPC3-NCX micro/nanodomain communication as determinant of cardiac contractility and susceptibility to arrhythmogenic stimuli.


Assuntos
Arritmias Cardíacas/fisiopatologia , Contração Miocárdica/fisiologia , Transdução de Sinais/fisiologia , Trocador de Sódio e Cálcio/fisiologia , Canais de Cátion TRPC/fisiologia , Potenciais de Ação/fisiologia , Animais , Arritmias Cardíacas/patologia , Cálcio/fisiologia , Modelos Animais de Doenças , Técnicas Eletrofisiológicas Cardíacas , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Miócitos Cardíacos/patologia , Miócitos Cardíacos/fisiologia , Técnicas de Patch-Clamp , Canais de Cátion TRPC/agonistas , Canais de Cátion TRPC/genética
19.
Angew Chem Int Ed Engl ; 53(43): 11557-61, 2014 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-25196172

RESUMO

To efficiently drive chemical reactions, it is often necessary to influence an equilibrium by removing one or more components from the reaction space. Such manipulation is straightforward in open systems, for example, by distillation of a volatile product from the reaction mixture. Herein we describe a unique high-temperature/high-pressure gas/liquid continuous-flow process for the rhodium-catalyzed decarbonylation of aldehydes. The carbon monoxide released during the reaction is carried with a stream of an inert gas through the center of the tubing, whereas the liquid feed travels as an annular film along the wall of the channel. As a consequence, carbon monoxide is effectively vaporized from the liquid phase into the gas phase and stripped from the reaction mixture, thus driving the equilibrium to the product and preventing poisoning of the catalyst. This approach enables the catalytic decarbonylation of a variety of aldehydes with unprecedented efficiency with a standard coil-based flow device.

20.
ChemSusChem ; 7(11): 3122-31, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25209099

RESUMO

An experimentally easy to perform method for the generation of alumina-supported Fe3O4 nanoparticles [(6±1) nm size, 0.67 wt %]and the use of this material in hydrazine-mediated heterogeneously catalyzed reductions of nitroarenes to anilines under batch and continuous-flow conditions is presented. The bench-stable, reusable nano-Fe3O4@Al2O3 catalyst can selectively reduce functionalized nitroarenes at 1 mol % catalyst loading by using a 20 mol % excess of hydrazine hydrate in an elevated temperature regime (150 °C, reaction time 2-6 min in batch). For continuous-flow processing, the catalyst material is packed into dedicated cartridges and used in a commercially available high-temperature/-pressure flow device. In continuous mode, reaction times can be reduced to less than 1 min at 150 °C (30 bar back pressure) in a highly intensified process. The nano-Fe3O4@Al2O3 catalyst demonstrated stable reduction of nitrobenzene (0.5 M in MeOH) for more than 10 h on stream at a productivity of 30 mmol h(-1) (0.72 mol per day). Importantly, virtually no leaching of the catalytically active material could be observed by inductively coupled plasma MS monitoring.


Assuntos
Óxido de Alumínio/química , Óxido Ferroso-Férrico/química , Hidrazinas/química , Nanopartículas/química , Compostos de Anilina/química , Catálise , Nitrocompostos/química , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA