Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1201439, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38482013

RESUMO

Introduction: Obesity is associated with chronic low-grade inflammation of adipose tissue (AT) and an increase of AT macrophages (ATMs) that is linked to the onset of type 2 diabetes. We have recently shown that neutralization of interleukin (IL)-6 in obese AT organ cultures inhibits proliferation of ATMs, which occurs preferentially in alternatively activated macrophage phenotype. Methods: In this study, we investigated AT biology and the metabolic phenotype of mice with myeloid cell-specific IL-6Rα deficiency (Il6ra Δmyel) after normal chow and 20 weeks of high-fat diet focusing on AT inflammation, ATM polarization and proliferation. Using organotypical AT culture and bone marrow derived macrophages (BMDMs) of IL-4Rα knockout mice (Il4ra -/-) we studied IL-6 signaling. Results: Obese Il6ra Δmyel mice exhibited no differences in insulin sensitivity or histological markers of AT inflammation. Notably, we found a reduction of ATMs expressing the mannose receptor 1 (CD206), as well as a decrease of the proliferation marker Ki67 in ATMs of Il6ra Δmyel mice. Importantly, organotypical AT culture and BMDM data of Il4ra -/- mice revealed that IL-6 mediates a shift towards the M2 phenotype independent from the IL-6/IL-4Rα axis. Discussion: Our results demonstrate IL-4Rα-independent anti-inflammatory effects of IL-6 on macrophages and the ability of IL-6 to maintain proliferation rates in obese AT.


Assuntos
Diabetes Mellitus Tipo 2 , Interleucina-6 , Camundongos , Animais , Interleucina-6/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Tecido Adiposo/metabolismo , Macrófagos/metabolismo , Inflamação/metabolismo , Camundongos Knockout , Obesidade/metabolismo
2.
Nucleic Acids Res ; 52(7): 3971-3988, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38300787

RESUMO

The RAVER1 protein serves as a co-factor in guiding the polypyrimidine tract-binding protein (PTBP)-dependent control of alternative splicing (AS). Whether RAVER1 solely acts in concert with PTBPs and how it affects cancer cell fate remained elusive. Here, we provide the first comprehensive investigation of RAVER1-controlled AS in cancer cell models. This reveals a pro-oncogenic role of RAVER1 in modulating tumor growth and epithelial-mesenchymal-transition (EMT). Splicing analyses and protein-association studies indicate that RAVER1 guides AS in association with other splicing regulators, including PTBPs and SRSFs. In cancer cells, one major function of RAVER1 is the stimulation of proliferation and restriction of apoptosis. This involves the modulation of AS events within the miR/RISC pathway. Disturbance of RAVER1 impairs miR/RISC activity resulting in severely deregulated gene expression, which promotes lethal TGFB-driven EMT. Among others, RAVER1-modulated splicing events affect the insertion of protein interaction modules in factors guiding miR/RISC-dependent gene silencing. Most prominently, in all three human TNRC6 proteins, RAVER1 controls AS of GW-enriched motifs, which are essential for AGO2-binding and the formation of active miR/RISC complexes. We propose, that RAVER1 is a key modulator of AS events in the miR/RISC pathway ensuring proper abundance and composition of miR/RISC effectors. This ensures balanced expression of TGFB signaling effectors and limits TGFB induced lethal EMT.


Assuntos
Processamento Alternativo , Transição Epitelial-Mesenquimal , MicroRNAs , Transição Epitelial-Mesenquimal/genética , Humanos , MicroRNAs/metabolismo , MicroRNAs/genética , Linhagem Celular Tumoral , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Fatores de Processamento de Serina-Arginina/metabolismo , Fatores de Processamento de Serina-Arginina/genética , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/genética , Apoptose/genética , Fator de Crescimento Transformador beta/metabolismo , Animais
3.
Viruses ; 15(7)2023 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-37515119

RESUMO

The oncofetal RNA-binding protein IGF2BP1 has been reported to be a driver of tumor progression in a multitude of cancer entities. Its main function is the stabilization of target transcripts by shielding these from miRNA-mediated degradation. However, there is growing evidence that several virus species recruit IGF2BP1 to promote their propagation. In particular, tumor-promoting viruses, such as hepatitis B/C and human papillomaviruses, benefit from IGF2BP1. Moreover, recent evidence suggests that non-oncogenic viruses, such as SARS-CoV-2, also take advantage of IGF2BP1. The only virus inhibited by IGF2BP1 reported to date is HIV-1. This review summarizes the current knowledge about the interactions between IGF2BP1 and different virus species. It further recapitulates several findings by presenting analyses from publicly available high-throughput datasets.


Assuntos
COVID-19 , Proteínas de Transporte , Humanos , Linhagem Celular Tumoral , Retroviridae/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , SARS-CoV-2/metabolismo
4.
Cancers (Basel) ; 15(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37173993

RESUMO

T-prolymphocytic leukemia (T-PLL) is a rare and mature T-cell malignancy with characteristic chemotherapy-refractory behavior and a poor prognosis. Molecular concepts of disease development have been restricted to protein-coding genes. Recent global microRNA (miR) expression profiles revealed miR-141-3p and miR-200c-3p (miR-141/200c) as two of the highest differentially expressed miRs in T-PLL cells versus healthy donor-derived T cells. Furthermore, miR-141/200c expression separates T-PLL cases into two subgroups with high and low expression, respectively. Evaluating the potential pro-oncogenic function of miR-141/200c deregulation, we discovered accelerated proliferation and reduced stress-induced cell death induction upon stable miR-141/200c overexpression in mature T-cell leukemia/lymphoma lines. We further characterized a miR-141/200c-specific transcriptome involving the altered expression of genes associated with enhanced cell cycle transition, impaired DNA damage responses, and augmented survival signaling pathways. Among those genes, we identified STAT4 as a potential miR-141/200c target. Low STAT4 expression (in the absence of miR-141/200c upregulation) was associated with an immature phenotype of primary T-PLL cells as well as with a shortened overall survival of T-PLL patients. Overall, we demonstrate an aberrant miR-141/200c-STAT4 axis, showing for the first time the potential pathogenetic implications of a miR cluster, as well as of STAT4, in the leukemogenesis of this orphan disease.

6.
Int J Mol Sci ; 24(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36982747

RESUMO

White adipose tissue (WAT) fibrosis, characterized by an excess of extracellular (ECM) matrix components, is strongly associated with WAT inflammation and dysfunction due to obesity. Interleukin (IL)-13 and IL-4 were recently identified as critical mediators in the pathogenesis of fibrotic diseases. However, their role in WAT fibrosis is still ill-defined. We therefore established an ex vivo WAT organotypic culture system and demonstrated an upregulation of fibrosis-related genes and an increase of α-smooth muscle actin (αSMA) and fibronectin abundance upon dose-dependent stimulation with IL-13/IL-4. These fibrotic effects were lost in WAT lacking il4ra, which encodes for the underlying receptor controlling this process. Adipose tissue macrophages were found to play a key role in mediating IL-13/IL-4 effects in WAT fibrosis as their depletion through clodronate dramatically decreased the fibrotic phenotype. IL-4-induced WAT fibrosis was partly confirmed in mice injected intraperitoneally with IL-4. Furthermore, gene correlation analyses of human WAT samples revealed a strong positive correlation of fibrosis markers with IL-13/IL-4 receptors, whereas IL13 and IL4 correlations failed to confirm this association. In conclusion, IL-13 and IL-4 can induce WAT fibrosis ex vivo and partly in vivo, but their role in human WAT remains to be further elucidated.


Assuntos
Interleucina-13 , Interleucina-4 , Humanos , Camundongos , Animais , Interleucina-13/genética , Interleucina-4/genética , Tecido Adiposo/patologia , Tecido Adiposo Branco/patologia , Fibrose
7.
Blood ; 141(10): 1105-1118, 2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36493345

RESUMO

Gain of chromosome 21 (Hsa21) is among the most frequent aneuploidies in leukemia. However, it remains unclear how partial or complete amplifications of Hsa21 promote leukemogenesis and why children with Down syndrome (DS) (ie, trisomy 21) are particularly at risk of leukemia development. Here, we propose that RUNX1 isoform disequilibrium with RUNX1A bias is key to DS-associated myeloid leukemia (ML-DS). Starting with Hsa21-focused CRISPR-CRISPR-associated protein 9 screens, we uncovered a strong and specific RUNX1 dependency in ML-DS cells. Expression of the RUNX1A isoform is elevated in patients with ML-DS, and mechanistic studies using murine ML-DS models and patient-derived xenografts revealed that excess RUNX1A synergizes with the pathognomonic Gata1s mutation during leukemogenesis by displacing RUNX1C from its endogenous binding sites and inducing oncogenic programs in complex with the MYC cofactor MAX. These effects were reversed by restoring the RUNX1A:RUNX1C equilibrium in patient-derived xenografts in vitro and in vivo. Moreover, pharmacological interference with MYC:MAX dimerization using MYCi361 exerted strong antileukemic effects. Thus, our study highlights the importance of alternative splicing in leukemogenesis, even on a background of aneuploidy, and paves the way for the development of specific and targeted therapies for ML-DS, as well as for other leukemias with Hsa21 aneuploidy or RUNX1 isoform disequilibrium.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core , Síndrome de Down , Leucemia Mieloide , Animais , Criança , Humanos , Camundongos , Aneuploidia , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Síndrome de Down/complicações , Síndrome de Down/genética , Leucemia Mieloide/genética , Isoformas de Proteínas/genética , Trissomia/genética
8.
Cancer Res ; 82(9): 1818-1831, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35259248

RESUMO

T-cell prolymphocytic leukemia (T-PLL) is a chemotherapy-refractory T-cell malignancy with limited therapeutic options and a poor prognosis. Current disease concepts implicate TCL1A oncogene-mediated enhanced T-cell receptor (TCR) signaling and aberrant DNA repair as central perturbed pathways. We discovered that recurrent gains on chromosome 8q more frequently involve the argonaute RISC catalytic component 2 (AGO2) gene than the adjacent MYC locus as the affected minimally amplified genomic region. AGO2 has been understood as a protumorigenic key regulator of miRNA (miR) processing. Here, in primary tumor material and cell line models, AGO2 overrepresentation associated (i) with higher disease burden, (ii) with enhanced in vitro viability and growth of leukemic T cells, and (iii) with miR-omes and transcriptomes that highlight altered survival signaling, abrogated cell-cycle control, and defective DNA damage responses. However, AGO2 elicited also immediate, rather non-RNA-mediated, effects in leukemic T cells. Systems of genetically modulated AGO2 revealed that it enhances TCR signaling, particularly at the level of ZAP70, PLCγ1, and LAT kinase phosphoactivation. In global mass spectrometric analyses, AGO2 interacted with a unique set of partners in a TCR-stimulated context, including the TCR kinases LCK and ZAP70, forming membranous protein complexes. Models of their three-dimensional structure also suggested that AGO2 undergoes posttranscriptional modifications by ZAP70. This novel TCR-associated noncanonical function of AGO2 represents, in addition to TCL1A-mediated TCR signal augmentation, another enhancer mechanism of this important deregulated growth pathway in T-PLL. These findings further emphasize TCR signaling intermediates as candidates for therapeutic targeting. SIGNIFICANCE: The identification of AGO2-mediated activation of oncogenic T cells through signal amplifying protein-protein interactions advances the understanding of leukemogenic AGO2 functions and underlines the role of aberrant TCR signaling in T-PLL.


Assuntos
Leucemia Prolinfocítica de Células T , MicroRNAs , Humanos , Leucemia Prolinfocítica de Células T/genética , Leucemia Prolinfocítica de Células T/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Fosforilação , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais/genética , Linfócitos T/metabolismo
9.
Haematologica ; 107(1): 187-200, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33543866

RESUMO

T-cell prolymphocytic leukemia (T-PLL) is a poor-prognostic mature T-cell malignancy. It typically presents with exponentially rising lymphocyte counts, splenomegaly, and bone marrow infiltration. Effective treatment options are scarce and a better understanding of TPLL's pathogenesis is desirable. Activation of the TCL1 proto-oncogene and loss-of-function perturbations of the tumor suppressor ATM are TPLL's genomic hallmarks. The leukemic cell reveals a phenotype of active T-cell receptor (TCR) signaling and aberrant DNA damage responses. Regulatory networks based on the profile of microRNA (miR) have not been described for T-PLL. In a combined approach of small-RNA and transcriptome sequencing in 46 clinically and moleculary well-characterized T-PLL, we identified a global T-PLL-specific miR expression profile that involves 34 significantly deregulated miR species. This pattern strikingly resembled miR-ome signatures of TCR-activated T cells. By integrating these T-PLL miR profiles with transcriptome data, we uncovered regulatory networks associated with cell survival signaling and DNA damage response pathways. Despite a miR-ome that discerned leukemic from normal T cells, there were also robust subsets of T-PLL defined by a small set of specific miR. Most prominently, miR-141 and the miR- 200c-cluster separated cases into two major subgroups. Furthermore, increased expression of miR-223-3p as well as reduced expression of miR-21 and the miR-29 cluster were associated with more activated Tcell phenotypes and more aggressive disease presentations. Based on the implicated pathobiological role of these miR deregulations, targeting strategies around their effectors appear worth pursuing. We also established a combinatorial miR-based overall survival score for T-PLL (miROS-T-PLL), that might improve current clinical stratifications.


Assuntos
Leucemia Prolinfocítica de Células T , MicroRNAs , Dano ao DNA , Humanos , Leucemia Prolinfocítica de Células T/tratamento farmacológico , Leucemia Prolinfocítica de Células T/genética , Leucemia Prolinfocítica de Células T/patologia , Ativação Linfocitária , MicroRNAs/genética , Linfócitos T
10.
Biology (Basel) ; 10(5)2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34067172

RESUMO

MEX3A belongs to the MEX3 (Muscle EXcess) protein family consisting of four members (MEX3A-D) in humans. Characteristic for MEX3 proteins is their domain structure with 2 HNRNPK homology (KH) domains mediating RNA binding and a C-terminal really interesting new gene (RING) domain that harbors E3 ligase function. In agreement with their domain composition, MEX3 proteins were reported to modulate both RNA fate and protein ubiquitination. MEX3 paralogs exhibit an oncofetal expression pattern, they are severely downregulated postnatally, and re-expression is observed in various malignancies. Enforced expression of MEX3 proteins in various cancers correlates with poor prognosis, emphasizing their oncogenic potential. The latter is supported by MEX3A's impact on proliferation, self-renewal as well as migration of tumor cells in vitro and tumor growth in xenograft studies.

11.
Mol Cancer ; 20(1): 88, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34116687

RESUMO

BACKGROUND: Cancer metastases are the main cause of lethality. The five-year survival rate for patients diagnosed with advanced stage oral cancer is 30%. Hence, the identification of novel therapeutic targets is an urgent need. However, tumors are comprised of a heterogeneous collection of cells with distinct genetic and molecular profiles that can differentially promote metastasis making therapy development a challenging task. Here, we leveraged intratumoral heterogeneity in order to identify drivers of cancer cell motility that might be druggable targets for anti-metastasis therapy. METHODS: We used 2D migration and 3D matrigel-based invasion assays to characterize the invasive heterogeneity among and within four human oral cancer cell lines in vitro. Subsequently, we applied mRNA-sequencing to map the transcriptomes of poorly and strongly invasive subclones as well as primary tumors and matched metastasis. RESULTS: We identified SAS cells as a highly invasive oral cancer cell line. Clonal analysis of SAS yielded a panel of 20 subclones with different invasive capacities. Integrative gene expression analysis identified the Lymphocyte cell-specific protein-tyrosine kinase (LCK) as a druggable target gene associated with cancer cell invasion and metastasis. Inhibition of LCK using A-770041 or dasatinib blocked invasion of highly aggressive SAS cells. Interestingly, reduction of LCK activity increased the formation of adherens junctions and induced cell differentiation. CONCLUSION: Analysis of invasive heterogeneity led to the discovery of LCK as an important regulator of motility in oral cancer cells. Hence, small molecule mediated inhibition of LCK could be a promising anti-metastasis therapy option for oral cancer patients.


Assuntos
Carcinoma de Células Escamosas/patologia , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/genética , Neoplasias Bucais/patologia , Invasividade Neoplásica/genética , Antineoplásicos/farmacologia , Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Dasatinibe/farmacologia , Humanos , Neoplasias Bucais/genética , Invasividade Neoplásica/patologia , Transcriptoma
12.
Front Mol Biosci ; 8: 632219, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33829040

RESUMO

The oncofetal IGF2 mRNA-binding protein 1 (IGF2BP1) promotes tumor progression in a variety of solid tumors and its expression is associated with adverse prognosis. The main role proposed for IGF2BP1 in cancer cells is the stabilization of mRNAs encoding pro-oncogenic factors. Several IGF2BP1-RNA association studies, however, revealed a plethora of putative IGF2BP1-RNA targets. Thus, at present the main conserved target RNAs and pathways controlled by IGF2BP1 in cancer remain elusive. In this study, we present a set of genes and cancer hallmark pathways showing a conserved pattern of deregulation in dependence of IGF2BP1 expression in cancer cell lines. By the integrative analysis of these findings with publicly available cancer transcriptome and IGF2BP1-RNA association data, we compiled a set of prime candidate target mRNAs. These analyses confirm a pivotal role of IGF2BP1 in controlling cancer cell cycle progression and reveal novel cancer hallmark pathways influenced by IGF2BP1. For three novel target mRNAs identified by these studies, namely AURKA, HDLBP and YWHAZ, we confirm IGF2BP1 mRNA stabilization. In sum our findings confirm and expand previous findings on the pivotal role of IGF2BP1 in promoting oncogenic gene expression by stabilizing target mRNAs in a mainly 3'UTR, m6A-, miRNA-, and potentially AU-rich element dependent manner.

13.
RNA Biol ; 18(3): 391-403, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32876513

RESUMO

Epithelial-to-mesenchymal transition (EMT) is a hallmark of aggressive, mesenchymal-like high-grade serous ovarian carcinoma (HGSOC). The SRC kinase is a key driver of cancer-associated EMT promoting adherens junction (AJ) disassembly by phosphorylation-driven internalization and degradation of AJ proteins. Here, we show that the IGF2 mRNA-binding protein 1 (IGF2BP1) is up-regulated in mesenchymal-like HGSOC and promotes SRC activation by a previously unknown protein-ligand-induced, but RNA-independent mechanism. IGF2BP1-driven invasive growth of ovarian cancer cells essentially relies on the SRC-dependent disassembly of AJs. Concomitantly, IGF2BP1 enhances ERK2 expression in an RNA-binding dependent manner. Together this reveals a post-transcriptional mechanism of interconnected stimulation of SRC/ERK signalling in ovarian cancer cells. The IGF2BP1-SRC/ERK2 axis is targetable by the SRC-inhibitor saracatinib and MEK-inhibitor selumetinib. However, due to IGF2BP1-directed stimulation, only combinatorial treatment effectively overcomes the IGF2BP1-promoted invasive growth in 3D culture conditions as well as intraperitoneal mouse models. In conclusion, we reveal an unexpected role of IGF2BP1 in enhancing SRC/MAPK-driven invasive growth of ovarian cancer cells. This provides a rationale for the therapeutic benefit of combinatorial SRC/MEK inhibition in mesenchymal-like HGSOC.


Assuntos
Regulação Neoplásica da Expressão Gênica , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neoplasias Ovarianas/etiologia , Neoplasias Ovarianas/metabolismo , Proteínas de Ligação a RNA/genética , Transdução de Sinais , Quinases da Família src/metabolismo , Junções Aderentes/genética , Junções Aderentes/metabolismo , Animais , Biomarcadores Tumorais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal/genética , Feminino , Humanos , Camundongos , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Inibidores de Proteínas Quinases/farmacologia , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Domínios de Homologia de src , Quinases da Família src/antagonistas & inibidores
14.
Ann Anat ; 233: 151586, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32916268

RESUMO

BACKGROUND: Obesity is a major public health problem with an increasing prevalence reaching pandemic levels. The incidence and mortality for colorectal cancer is augmented in overweight and obese individuals. Previous studies demonstrated an impaired number, phenotype and functionality of natural killer (NK) cells under obese conditions. So far, the influence of obesity on NK cells in colorectal cancer tissue remained unclear. Therefore, the aim of the study was to investigate the occurrence and localization of NK cells in colorectal tumors of normal weight and diet-induced obese rats. METHODS: Wistar rats were fed a normal-fat diet (control) or a high-fat diet (HFD) to induce obesity. In half of the experimental groups azoxymethane (AOM) was injected to induce colorectal cancer. Tumors in colon and rectum were histopathologically classified in adenomas and adenocarcinomas and immunohistologically stained with the rat NK cell marker CD161. Occurrence and localization of NK cells were analyzed and quantified in the tunica mucosa and tunica submucosa of colorectal adenomas and the tunica submucosa of colorectal adenocarcinomas. RESULTS: NK cells are localized in the tunica mucosa and the tunica submucosa of colorectal tumors with NK cell accumulations as follicle-like aggregates especially in regions of the lamina muscularis mucosae and the lamina propria mucosae of the tunica mucosa as well as in regions of the tunica submucosa adjacent to the lamina muscularis mucosae. Although not statistically significant, the CD161 staining was clearly reduced in the tunica mucosa of colorectal tumors of rats fed a HFD compared to rats fed a control diet. Moreover, the CD161 staining in the tunica mucosa was positively correlated with the final body weight of AOM-treated rats independent of the supplied diet. DISCUSSION: For the first time, these results provide information about the localization and quantity of NK cells in colorectal tumor tissue of rats fed a control diet or high-fat diet. The slight reduction of NK cell number in colorectal tissue of rats fed a high-fat diet may contribute to an impaired tumor defense and the increased colorectal tumor outcome in diet-induced obese rats.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Animais , Dieta Hiperlipídica , Células Matadoras Naturais , Ratos , Ratos Endogâmicos F344 , Ratos Wistar
15.
Cancers (Basel) ; 12(12)2020 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-33291443

RESUMO

The stem cell marker Musashi1 (MSI1) is highly expressed during neurogenesis and in glioblastoma (GBM). MSI1 promotes self-renewal and impairs differentiation in cancer and non-malignant progenitor cells. However, a comprehensive understanding of its role in promoting GBM-driving networks remains to be deciphered. We demonstrate that MSI1 is highly expressed in GBM recurrences, an oncologist's major defiance. For the first time, we provide evidence that MSI1 promotes the expression of stem cell markers like CD44, co-expressed with MSI1 within recurrence-promoting cells at the migrating front of primary GBM samples. With GBM cell models of pediatric and adult origin, including isolated primary tumorspheres, we show that MSI1 promotes stem cell-like characteristics. Importantly, it impairs CD44 downregulation in a 3'UTR- and miRNA-dependent manner by controlling mRNA turnover. This regulation is disturbed by the previously reported MSI1 inhibitor luteolin, providing further evidence for a therapeutic target potential of MSI1 in GBM treatment.

16.
Sci Rep ; 10(1): 20606, 2020 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-33244094

RESUMO

Obesity is a widely spread disease and a crucial risk factor for malign disorders, including breast cancer of women in the postmenopause. Studies demonstrated that in case of obesity crucial natural killer (NK) cell functions like combating tumor cells are affected. This study aims to analyze NK cells and NK cell receptor expression of obese mice in a model for postmenopausal breast cancer. Therefore, female BALB/c mice were fed either a high fat or a standard diet. Thereafter, ovaries were ectomized and a syngeneic and orthotopical injection of 4T1-luc2 mouse mammary tumor cells into the mammary adipose tissue pad was performed. Obese mice showed increased body weights and visceral fat mass as well as increased levels of leptin and IL-6 in plasma. Moreover, compared to the lean littermates, tumor growth was increased and the NKp46-expression on circulating NK cells was decreased. Furthermore, the activating NK cell receptor NKG2D ligand (MULT1) expression was enhanced in adipose tissue of obese tumor bearing mice. The present study gives novel insights into gene expression of NK cell receptors in obesity and aims to promote possible links of the obesity-impaired NK cell physiology and the elevated breast cancer risk in obese women.


Assuntos
Células Matadoras Naturais/patologia , Neoplasias Mamárias Animais/complicações , Obesidade/complicações , Animais , Neoplasias da Mama/sangue , Neoplasias da Mama/complicações , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Antígenos de Histocompatibilidade Classe I/análise , Interleucina-6/sangue , Leptina/sangue , Neoplasias Mamárias Animais/sangue , Neoplasias Mamárias Animais/patologia , Proteínas de Membrana/análise , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Obesos , Obesidade/sangue , Obesidade/patologia , Pós-Menopausa
17.
Nucleic Acids Res ; 48(15): 8576-8590, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32761127

RESUMO

The IGF2 mRNA-binding protein 1 (IGF2BP1) is a non-catalytic post-transcriptional enhancer of tumor growth upregulated and associated with adverse prognosis in solid cancers. However, conserved effector pathway(s) and the feasibility of targeting IGF2BP1 in cancer remained elusive. We reveal that IGF2BP1 is a post-transcriptional enhancer of the E2F-driven hallmark in solid cancers. IGF2BP1 promotes G1/S cell cycle transition by stabilizing mRNAs encoding positive regulators of this checkpoint like E2F1. This IGF2BP1-driven shortening of the G1 cell cycle phase relies on 3'UTR-, miRNA- and m6A-dependent regulation and suggests enhancement of cell cycle progression by m6A-modifications across cancers. In addition to E2F transcription factors, IGF2BP1 also stabilizes E2F-driven transcripts directly indicating post-transcriptional 'super'-enhancer role of the protein in E2F-driven gene expression in cancer. The small molecule BTYNB disrupts this enhancer function by impairing IGF2BP1-RNA association. Consistently, BTYNB interferes with E2F-driven gene expression and tumor growth in experimental mouse tumor models.


Assuntos
Fatores de Transcrição E2F/genética , Neoplasias/genética , Proteínas de Ligação a RNA/genética , Regiões 3' não Traduzidas/genética , Animais , Linhagem Celular Tumoral , Fator de Transcrição E2F1/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Camundongos , Neoplasias/patologia , Proteínas de Ligação a RNA/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia
18.
Cancers (Basel) ; 12(8)2020 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-32727085

RESUMO

Pancreatic ductal adenocarcinomas (PDAC) belong to the deadliest malignancies in the western world. Mutations in TP53 and KRAS genes along with some other frequent polymorphisms occur almost universally and are major drivers of tumour initiation. However, these mutations cannot explain the heterogeneity in therapeutic responses and differences in overall survival observed in PDAC patients. Thus, recent classifications of PDAC tumour samples have leveraged transcriptome-wide gene expression data to account for epigenetic, transcriptional and post-transcriptional mechanisms that may contribute to this deadly disease. Intriguingly, long intervening RNAs (lincRNAs) are a special class of long non-coding RNAs (lncRNAs) that can control gene expression programs on multiple levels thereby contributing to cancer progression. However, their subtype-specific expression and function as well as molecular interactions in PDAC are not fully understood yet. In this study, we systematically investigated the expression of lincRNAs in pancreatic cancer and its molecular subtypes using publicly available data from large-scale studies. We identified 27 deregulated lincRNAs that showed a significant different expression pattern in PDAC subtypes suggesting context-dependent roles. We further analyzed these lincRNAs regarding their common expression patterns. Moreover, we inferred clues on their functions based on correlation analyses and predicted interactions with RNA-binding proteins, microRNAs, and mRNAs. In summary, we identified several PDAC-associated lincRNAs of prognostic relevance and potential context-dependent functions and molecular interactions. Hence, our study provides a valuable resource for future investigations to decipher the role of lincRNAs in pancreatic cancer.

19.
Int J Mol Sci ; 21(11)2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32545414

RESUMO

Pancreatic ductal adenocarcinomas (PDAC) belong to the most frequent and most deadly malignancies in the western world. Mutations in KRAS and TP53 along with some other frequent polymorphisms occur almost universally and are likely to be responsible for tumor initiation. However, these mutations cannot explain the heterogeneity in therapeutic responses observed in PDAC patients, which limits efficiency of current therapeutic strategies. Instead, recent classifications of PDAC tumor samples are based on transcriptomics data and thus include information about epigenetic, transcriptomic, and post-transcriptomic deregulations. RNA binding proteins (RBPs) are important post-transcriptional regulators involved in every aspect of the RNA life cycle and thus considerably influence the transcriptome. In this study, we systematically investigated deregulated expression, prognostic value, and essentiality reported for RBPs in PDAC or PDAC cancer models using publicly available data. We identified 44 RBPs with suggested oncogenic potential. These include various proteins, e.g., IGF2 mRNA binding proteins (IGF2BPs), with reported tumor-promoting roles. We further characterized these RBPs and found common patterns regarding their expression, interaction, and regulation by microRNAs. These analyses suggest four prime candidate oncogenic RBPs with partially validated target potential: APOBEC1, IGF2BP1 and 3, and OASL.


Assuntos
Carcinoma Ductal Pancreático/genética , Neoplasias Pancreáticas/genética , Proteínas de Ligação a RNA/genética , 2',5'-Oligoadenilato Sintetase/genética , Desaminase APOBEC-1/genética , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs , Terapia de Alvo Molecular , Mapas de Interação de Proteínas/genética , Proteínas de Ligação a RNA/metabolismo , Fluxo de Trabalho
20.
Cancers (Basel) ; 12(5)2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32414223

RESUMO

Pancreatic adenocarcinoma (PDAC) is one of the major causes of cancer-associated deaths worldwide, with a dismal prognosis that has not significantly changed over the last decades. Transcriptional analysis has provided valuable insights into pancreatic tumorigenesis. Specifically, pancreatic cancer subtypes were identified, characterized by specific mutations and gene expression changes associated with differences in patient survival. In addition to differentially regulated mRNAs, non-coding RNAs, including long non-coding RNAs (lncRNAs), were shown to have subtype-specific expression patterns. Hence, we aimed to characterize prognostic lncRNAs with deregulated expression in the squamous subtype of PDAC, which has the worst prognosis. Extensive in silico analyses followed by in vitro experiments identified long intergenic non-coding RNA 261 (LINC00261) as a downregulated lncRNA in the squamous subtype of PDAC, which is generally associated with transforming growth factor ß (TGFß) signaling in human cancer cells. Its genomic neighbor, the transcription factor forkhead box protein A2 (FOXA2), regulated LINC00261 expression by direct binding of the LINC00261 promoter. CRISPR-mediated knockdown and promoter knockout validated the importance of LINC00261 in TGFß-mediated epithelial-mesenchymal transition (EMT) and established the epithelial marker E-cadherin, an important cell adhesion protein, as a downstream target of LINC00261. Consequently, depletion of LINC00261 enhanced motility and invasiveness of PANC-1 cells in vitro. Altogether, our data suggest that LINC00261 is an important tumor-suppressive lncRNA in PDAC that is involved in maintaining a pro-epithelial state associated with favorable disease outcome.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...