Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 62(40): 16329-16342, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37756217

RESUMO

We report on a nonoxidative topochemical route for the synthesis of a novel indate-based oxyfluoride, LaBaInO3F2, using a low-temperature reaction of Ruddlesden-Popper-type LaBaInO4 with polyvinylidene difluoride as a fluorinating agent. The reaction involves the replacement of oxide ions with fluoride ions as well as the insertion of fluoride ions into the interstitial sites. From the characterization via powder X-ray diffraction (PXRD) and Rietveld analysis as well as automated electron diffraction tomography (ADT), it is deduced that the fluorination results in a symmetry lowering from I4/mmm (139) to monoclinic C2/c (15) with an expansion perpendicular to the perovskite layers and a strong tilting of the octahedra in the ab plane. Disorder of the anions on the apical and interstitial sites seems to be favored. The most stable configuration for the anion ordering is estimated based on an evaluation of bond distances from the ADT measurements via bond valence sums (BVSs). The observed disordering of the anions in the oxyfluoride results in changes in the optical properties and thus shows that the topochemical anion modification can present a viable route to alter the optical properties. Partial densities of states (PDOSs) obtained from ab initio density functional theory (DFT) calculations reveal a bandgap modification upon fluoride-ion introduction which originates from the presence of the oxide anions on the interstitial sites. The photocatalytic performance of the oxide and oxyfluoride shows that both materials are photocatalytically active for hydrogen (H2) evolution.

2.
J Am Chem Soc ; 145(34): 18977-18991, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37590931

RESUMO

Fe K-edge X-ray absorption spectroscopy (XAS) has long been used for the study of high-valent iron intermediates in biological and artificial catalysts. 4p-mixing into the 3d orbitals complicates the pre-edge analysis but when correctly understood via 1s2p resonant inelastic X-ray scattering and Fe L-edge XAS, it enables deeper insight into the geometric structure and correlates with the electronic structure and reactivity. This study shows that in addition to the 4p-mixing into the 3dz2 orbital due to the short iron-oxo bond, the loss of inversion in the equatorial plane leads to 4p mixing into the 3dx2-y2,xy, providing structural insight and allowing the distinction of 6- vs 5-coordinate active sites as shown through application to the Fe(IV)═O intermediate of taurine dioxygenase. Combined with O K-edge XAS, this study gives an unprecedented experimental insight into the electronic structure of Fe(IV)═O active sites and their selectivity for reactivity enabled by the π-pathway involving the 3dxz/yz orbitals. Finally, the large effect of spin polarization is experimentally assigned in the pre-edge (i.e., the α/ß splitting) and found to be better modeled by multiplet simulations rather than by commonly used time-dependent density functional theory.


Assuntos
Eletrônica , Ferro , Raios X , Espectroscopia por Absorção de Raios X , Teoria da Densidade Funcional
3.
Anal Chem ; 95(23): 8758-8762, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37235752

RESUMO

We describe a protocol for efficient detection of the chemical state of an element based on X-ray emission (fluorescence) spectroscopy using a Bragg optics spectrometer. The ratio of intensities at two appropriately chosen X-ray emission energies is a self-normalized quantity largely free of experimental artifacts and can thus be recorded with high accuracy. As the X-ray fluorescence lines are chemically sensitive, the intensity ratio identifies the chemical state. Differences between chemical states in spatially inhomogeneous or temporally evolving samples can be identified already with low numbers of photon events. This reduces the time required for data acquisition by 2 orders of magnitude as compared to recording a full spectrum.

4.
Inorg Chem ; 61(2): 869-881, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-34957831

RESUMO

X-ray spectroscopy using high-energy-resolution fluorescence detection (HERFD) has critically increased the information content in X-ray spectra. We extend this technique to the tender X-ray range and present a study at the L3-edge of molybdenum. We show how information on the oxidation state, phase composition, and local environment in molybdenum-based compounds can be obtained by analyzing the HERFD L3 X-ray absorption near-edge structure (XANES). We demonstrate that the chemical shift of the L3-edge HERFD spectra follows a parabolic dependence on the oxidation state and show that a qualitative analysis of high-resolution spectra can help to estimate parameters such as distortion of a ligand environment and radial order of atoms around the absorber. In certain cases, the spectra allow disentangling the contributions from bond lengths and angles to the distortion of the ligand polyhedron. Comparison of the high-resolution spectra with theoretical simulations shows that the single-electron approximation is able to reproduce the spectral shape. The results of this work may be useful in every branch of physics, inorganic and organometallic chemistry, catalysis, materials science, biochemistry, and mineralogy where observed changes in performance or chemical properties of Mo-based compounds, accompanied by small changes in spectral shape, are to be related to the details of electronic structure and local atomic environment.

5.
Dalton Trans ; 50(44): 16133-16138, 2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34671785

RESUMO

Atomic/molecular layer deposition (ALD/MLD) is currently strongly emerging as an intriguing route for novel metal-organic thin-film materials. This approach already covers a variety of metal and organic components, and potential applications related to e.g. sustainable energy technologies. Among the 3d metal components, nickel has remained unexplored so far. Here we report a robust and efficient ALD/MLD process for the growth of high-quality nickel terephthalate thin films. The films are deposited from Ni(thd)2 (thd: 2,2,6,6-tetramethyl-3,5-heptanedionate) and terephthalic acid (1,4-benzenedicarboxylic acid) precursors in the temperature range of 180-280 °C, with appreciably high growth rates up to 2.3 Å per cycle at 200 °C. The films are amorphous but the local structure and chemical state of the films are addressed based on XRR, FTIR and RIXS techniques.

6.
Environ Sci Technol ; 55(6): 3612-3623, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33629845

RESUMO

Bacteria are the most abundant organisms on Earth and also the major life form affected by mercury (Hg) poisoning in aquatic and terrestrial food webs. In this study, we applied high energy-resolution X-ray absorption near edge structure (HR-XANES) spectroscopy to bacteria with intracellular concentrations of Hg as low as 0.7 ng/mg (ppm) for identifying the intracellular molecular forms and trafficking pathways of Hg in bacteria at environmentally relevant concentrations. Gram-positive Bacillus subtilis and Gram-negative Escherichia coli were exposed to three Hg species: HgCl2, Hg-dicysteinate (Hg(Cys)2), and Hg-dithioglycolate (Hg(TGA)2). In all cases, Hg was transformed into new two- and four-coordinate cysteinate complexes, interpreted to be bound, respectively, to the consensus metal-binding CXXC motif and zinc finger domains of proteins, with glutathione acting as a transfer ligand. Replacement of zinc cofactors essential to gene regulatory proteins with Hg would inhibit vital functions such as DNA transcription and repair and is suggested to be a main cause of Hg genotoxicity.


Assuntos
Mercúrio , Bacillus subtilis , Escherichia coli , Cadeia Alimentar , Mercúrio/toxicidade , Espectroscopia por Absorção de Raios X
7.
J Synchrotron Radiat ; 28(Pt 1): 362-371, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33399588

RESUMO

X-ray emission spectroscopy in a point-to-point focusing geometry using instruments that employ more than one analyzer crystal poses challenges with respect to mechanical design and performance. This work discusses various options for positioning the components and provides the formulas for calculating their relative placement. Ray-tracing calculations were used to determine the geometrical contributions to the energy broadening including the source volume as given by the beam footprint on the sample. The alignment of the instrument is described and examples are given for the performance.

8.
Environ Sci Technol ; 55(3): 1527-1534, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33476127

RESUMO

Toxicity of methylmercury (MeHg) to wildlife and humans results from its binding to cysteine residues of proteins, forming MeHg-cysteinate (MeHgCys) complexes that hinder biological functions. MeHgCys complexes can be detoxified in vivo, yet how this occurs is unknown. We report that MeHgCys complexes are transformed into selenocysteinate [Hg(Sec)4] complexes in multiple animals from two phyla (a waterbird, freshwater fish, and earthworms) sampled in different geographical areas and contaminated by different Hg sources. In addition, high energy-resolution X-ray absorption spectroscopy (HR-XANES) and chromatography-inductively coupled plasma mass spectrometry of the waterbird liver support the binding of Hg(Sec)4 to selenoprotein P and biomineralization of Hg(Sec)4 to chemically inert nanoparticulate mercury selenide (HgSe). The results provide a foundation for understanding mercury detoxification in higher organisms and suggest that the identified MeHgCys to Hg(Sec)4 demethylation pathway is common in nature.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Oligoquetos , Animais , Aves , Desmetilação , Humanos
9.
Environ Sci Technol ; 55(3): 1515-1526, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33476140

RESUMO

In vivo and in vitro evidence for detoxification of methylmercury (MeHg) as insoluble mercury selenide (HgSe) underlies the central paradigm that mercury exposure is not or little hazardous when tissue Se is in molar excess (Se:Hg > 1). However, this hypothesis overlooks the binding of Hg to selenoproteins, which lowers the amount of bioavailable Se that acts as a detoxification reservoir for MeHg, thereby underestimating the toxicity of mercury. This question was addressed by determining the chemical forms of Hg in various tissues of giant petrels Macronectes spp. using a combination of high energy-resolution X-ray absorption near edge structure and extended X-ray absorption fine structure spectroscopy, and transmission electron microscopy coupled to elemental mapping. Three main Hg species were identified, a MeHg-cysteinate complex, a four-coordinate selenocysteinate complex (Hg(Sec)4), and a HgSe precipitate, together with a minor dicysteinate complex Hg(Cys)2. The amount of HgSe decreases in the order liver > kidneys > brain = muscle, and the amount of Hg(Sec)4 in the order muscle > kidneys > brain > liver. On the basis of biochemical considerations and structural modeling, we hypothesize that Hg(Sec)4 is bound to the carboxy-terminus domain of selenoprotein P (SelP) which contains 12 Sec residues. Structural flexibility allows SelP to form multinuclear Hgx(Se,Sec)y complexes, which can be biomineralized to HgSe by protein self-assembly. Because Hg(Sec)4 has a Se:Hg molar ratio of 4:1, this species severely depletes the stock of bioavailable Se for selenoprotein synthesis and activity to one µg Se/g dry wet in the muscle of several birds. This concentration is still relatively high because selenium is naturally abundant in seawater, therefore it probably does not fall below the metabolic need for essential selenium. However, this study shows that this may not be the case for terrestrial animals, and that muscle may be the first tissue potentially injured by Hg toxicity.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Nanopartículas , Selênio , Poluentes Químicos da Água , Animais , Mercúrio/análise , Músculos/química , Poluentes Químicos da Água/análise
10.
Phys Chem Chem Phys ; 22(48): 28459-28467, 2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33295360

RESUMO

Worldwide significant efforts are ongoing to develop devices that store solar energy as fuels. In one such approach, solar energy is absorbed by semiconductors and utilized directly by catalysts at their surfaces to split water into H2 and O2. To protect the semiconductors in these photo-electrochemical cells (PEC) from corrosion, frequently thin TiO2 interlayers are applied. Employing a well-performing photoanode comprised of 1-D n-Si microwires (MWs) covered with a mesoporous (mp) TiO2 interlayer fabricated by solution processing and functionalized with α-Fe2O3 nanorods, we studied here the function of this TiO2 interlayer by high-energy resolution fluorescence detected X-ray absorption near edge structure (HERFD-XANES) spectroscopy, along with X-ray emission spectroscopy (XES) and standard characterization techniques. Our data reveal that the TiO2 interlayer not only protects the n-Si MW surface from corrosion, but that it also acts as a template for the hydrothermal growth of α-Fe2O3 nanorods and improves the photocatalytic efficiency. We show that the latter effect correlates with the presence of stable oxygen vacancies at the interface between mp-TiO2 and α-Fe2O3, which act as electron traps and thereby substantially reduce the charge recombination rate at the hematite surface.

11.
Anal Chem ; 92(20): 14164-14173, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32955250

RESUMO

Synchrotron radiation (SR)-based X-ray methods are powerful analytical tools for several purposes. They are widely used to probe the degradation mechanisms of inorganic artists' pigments in paintings, including chrome yellows (PbCr1-xSxO4; 0 ≤ x ≤ 0.8), a class of compounds often found in Van Gogh masterpieces. However, the high intensity and brightness of SR beams raise important issues regarding the potential damage inflicted on the analyzed samples. A thorough knowledge of the SR X-ray sensitivity of each class of pigment in the painting matrix is therefore required to find analytical strategies that seek to minimize the damage for preserving the integrity of the analyzed samples and to avoid data misinterpretation. Here, we employ a combination of Cr K-edge X-ray absorption near-edge structure spectroscopy, Cr-Kß X-ray emission spectroscopy, and X-ray diffraction to monitor and quantify the effects of SR X-rays on the stability of chrome yellows and related Cr compounds and to define mitigation strategies. We found that the SR X-ray beam exposure induces changes in the oxidation state and local coordination environment of Cr ions and leads to a loss of the compound's crystalline structure. The extent of X-ray damage depends on some intrinsic properties of the samples (chemical composition of the pigment and the presence/absence and nature of the binder). It can be minimized by optimizing the overall fluence/dose released to the samples and by working in vacuum and under cryogenic conditions.

12.
Nanoscale ; 12(30): 16270-16284, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32760987

RESUMO

Analysis of the electronic structure and local coordination of an element is an important aspect in the study of the chemical and physical properties of materials. This is particularly relevant at the nanoscale where new phases of matter may emerge below a critical size. X-ray emission spectroscopy (XES) at synchrotron radiation sources and free electron lasers has enriched the field of X-ray spectroscopy. The spectroscopic techniques derived from the combination of X-ray absorption and emission spectroscopy (XAS-XES), such as resonant inelastic X-ray scattering (RIXS) and high energy resolution fluorescence detected (HERFD) XAS, are an ideal tool for the study of nanomaterials. New installations and beamline upgrades now often include wavelength dispersive instruments for the analysis of the emitted X-rays. With the growing use of XAS-XES, scientists are learning about the possibilities and pitfalls. We discuss some experimental aspects, assess the feasibility of measuring weak fluorescence lines in dilute, radiation sensitive samples, and present new experimental approaches for studying magnetic properties of colloidal nanoparticles directly in the liquid phase.

13.
Phys Rev Lett ; 125(3): 033001, 2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32745429

RESUMO

Laser excitation and x-ray spectroscopy are combined to settle a long-standing question in persistent luminescence. A reversible electron transfer is demonstrated, controlled by light and showing the same kinetics as the persistent luminescence. Exposure to violet light induces charging by oxidation of the excited Eu^{2+} while Dy^{3+} is simultaneously reduced. Oppositely, detrapping of Dy^{2+} occurs at ambient temperature or by infrared illumination, yielding afterglow or optically stimulated luminescence, respectively.

14.
Inorg Chem ; 59(17): 12518-12535, 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32830953

RESUMO

K-fluorescence X-ray emission spectroscopy (XES) is receiving growing interest in all fields of natural sciences to investigate the local spin. The spin sensitivity in Kß (Kα) XES stems from the exchange interaction between the unpaired 3p (2p) and the 3d electrons, which is greater for Kß than for Kα. We present a thorough investigation of a large number of iron-bearing compounds. The experimental spectra were analyzed in terms of commonly used quantitative parameters (Kß1,3-first moment, Kα1-full width at half-maximum, and integrated absolute difference -IAD-), and we carefully examined the difference spectra. Multiplet calculations were also performed to elucidate the underlying mechanisms that lead to the chemical sensitivity. Our results confirm a strong influence of covalency on both Kß and Kα lines. We establish a reliable spin sensitivity of Kß XES as it is dominated by the exchange interaction, whose variations can be quantified by either Kß1,3-first moment or Kß-IAD and result in a systematic difference signal line shape. We find an exception in the Kß XES of Fe3+ and Fe2+ in water solution, where a new difference spectrum is identified that cannot be reproduced by scaling the exchange integrals. We explain this by strong differences in orbital mixing between the valence orbitals. This result calls for caution in the interpretation of Kß XES spectral changes as due to spin variations without a careful analysis of the line shape. For Kα XES, the smaller exchange interaction and the influence of other electron-electron interactions make it difficult to extract a quantity that directly relates to the spin.

15.
J Synchrotron Radiat ; 27(Pt 3): 813-826, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32381786

RESUMO

The design and first results of a large-solid-angle X-ray emission spectrometer that is optimized for energies between 1.5 keV and 5.5 keV are presented. The spectrometer is based on an array of 11 cylindrically bent Johansson crystal analyzers arranged in a non-dispersive Rowland circle geometry. The smallest achievable energy bandwidth is smaller than the core hole lifetime broadening of the absorption edges in this energy range. Energy scanning is achieved using an innovative design, maintaining the Rowland circle conditions for all crystals with only four motor motions. The entire spectrometer is encased in a high-vacuum chamber that allocates a liquid helium cryostat and provides sufficient space for in situ cells and operando catalysis reactors.

16.
Phys Chem Chem Phys ; 22(16): 9067-9073, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32297625

RESUMO

Iron centered N-heterocyclic carbene (Fe-NHC) complexes have shown long-lived excited states with charge transfer character useful for light harvesting applications. Understanding the nature of the metal-ligand bond is of fundamental importance to rationally tailor the properties of transition metal complexes. The high-energy-resolution fluorescence detected X-ray absorption near edge structure (HERFD-XANES) has been used to probe the valence orbitals of three carbene complexes, [FeII(bpy)(btz)2](PF6)2 (bpy = 2,2'-bipyridine, btz = 3,3'-dimethyl-1,1'-bis(p-tolyl)-4,4'-bis(1,2,3-triazol-5-ylidene)), [FeIII(btz)3](PF6)3, and [FeIII(phtmeimb)2]PF6 (phtmeimb = [phenyl(tris(3-methylimidazol-2-ylidene))borate]-). The multiconfigurational restrict active space (RAS) approach has been used to simulate the metal K pre-edge X-ray absorption spectroscopy of these carbene complexes, and have reproduced the metal K pre-edge spectral features in terms of relative intensity and peak positions. The evident intensity difference between the FeII and the other two FeIII complexes has been elucidated with different intensity mechanisms in the transition. The smaller splitting between the t2g and eg character peak for [FeIII(btz)3](PF6)3 has been observed in the experimental measurements and been reproduced in the RAS calculations. The results show how the combination of experimental HERFD-XANES measurements and ab initio RAS simulations can give quantitative evaluation of the orbital interactions between metal and ligands for such large and strongly interacting systems and thus allow to understand and predict properties of novel complexes.

17.
J Phys Chem Lett ; 10(24): 7698-7705, 2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31730353

RESUMO

Spatially resolved operando HERFD-XANES (high energy resolution fluorescence detected X-ray absorption near edge structure) complemented by CO concentration gradient profiles along the catalyst bed (SpaciPro) was used to identify the dominant reaction paths for the low and high temperature CO oxidation on Pt/CeO2 and Pt/Al2O3. At low temperatures, features associated with CO adsorption on Pt were found for both catalysts. During the oxidation reaction light-off, the evolution of the spectral and catalytic profile diverged along the catalyst bed. The CO oxidation rate was high on Pt/CeO2 from the beginning of the catalyst bed with CO being adsorbed on Pt, whereas low CO conversion due to strong CO poisoning was found on Pt/Al2O3. This correlation of the CO concentration gradient with unique insight by HERFD-XANES gave direct proof of the crucial contribution of the Pt-CeO2 perimeter sites overcoming the CO self-inhibition effect at low temperatures.

18.
Proc Natl Acad Sci U S A ; 116(8): 2854-2859, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30718404

RESUMO

Hemoglobin and myoglobin are oxygen-binding proteins with S = 0 heme {FeO2}8 active sites. The electronic structure of these sites has been the subject of much debate. This study utilizes Fe K-edge X-ray absorption spectroscopy (XAS) and 1s2p resonant inelastic X-ray scattering (RIXS) to study oxyhemoglobin and a related heme {FeO2}8 model compound, [(pfp)Fe(1-MeIm)(O2)] (pfp = meso-tetra(α,α,α,α-o-pivalamido-phenyl)porphyrin, or TpivPP, 1-MeIm = 1-methylimidazole) (pfpO2), which was previously analyzed using L-edge XAS. The K-edge XAS and RIXS data of pfpO2 and oxyhemoglobin are compared with the data for low-spin FeII and FeIII [Fe(tpp)(Im)2]0/+ (tpp = tetra-phenyl porphyrin) compounds, which serve as heme references. The X-ray data show that pfpO2 is similar to FeII, while oxyhemoglobin is qualitatively similar to FeIII, but with significant quantitative differences. Density-functional theory (DFT) calculations show that the difference between pfpO2 and oxyhemoglobin is due to a distal histidine H bond to O2 and the less hydrophobic environment in the protein, which lead to more backbonding into the O2 A valence bond configuration interaction multiplet model is used to analyze the RIXS data and show that pfpO2 is dominantly FeII with 6-8% FeIII character, while oxyhemoglobin has a very mixed wave function that has 50-77% FeIII character and a partially polarized Fe-O2 π-bond.


Assuntos
Ferro/química , Oxigênio/química , Oxiemoglobinas/química , Porfirinas/química , Domínio Catalítico , Compostos Férricos/química , Heme/química , Metaloporfirinas/química , Modelos Moleculares , Mioglobina/química , Espalhamento de Radiação , Espectroscopia por Absorção de Raios X , Raios X
19.
Environ Sci Technol ; 53(9): 4880-4891, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30719924

RESUMO

The freshwater cyprinid Tanichthys albonubes was used to assess the bioavailability of divalent mercury (Hg(II)) complexed in dissolved organic matter (DOM) to fish. The fish acquired 0.3 to 2.2 µg Hg/g dry weight after 8 weeks in aquaria containing DOM from a Carex peat with complexed mercury at initial concentrations of 14 nM to 724 nM. Changes in the relative proportions of dithiolate Hg(SR)2 and nanoparticulate ß-HgS in the DOM, as quantified by high energy-resolution XANES (HR-XANES) spectroscopy, indicate that Hg(SR)2 complexes either produced by microbially induced dissolution of nanoparticulate ß-HgS in the DOM or present in the original DOM were the forms of mercury that entered the fish. In the fish with 2.2 µg Hg/g, 84 ± 8% of Hg(II) was bonded to two axial thiolate ligands and one or two equatorial N/O electron donors (Hg[(SR)2+(N/O)1-2] coordination), and 16% had a Hg(SR)4 coordination, as determined by HR-XANES. For comparison, fish exposed to Hg2+ from 40 nM HgCl2 contained 10.4 µg Hg/g in the forms of dithiolate (20 ± 10%) and tetrathiolate (23 ± 10%) complexes, and also Hg xS y clusters (57 ± 15%) having a ß-HgS-type local structure and a dimension that exceeded the size of metallothionein clusters. There was no evidence of methylmercury in the fish or DOM within the 10% uncertainty of the HR-XANES. Together, the results indicate that inorganic Hg(II) bound to DOM is a source of mercury to biota with dithiolate Hg(SR)2 complexes as the immediate species bioavailable to fish, and that these complexes transform in response to cellular processes.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Animais , Alimentos Marinhos , Solo , Espectroscopia por Absorção de Raios X
20.
Dalton Trans ; 48(4): 1166-1170, 2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30534760

RESUMO

Herein, we communicate about an Earth-abundant semiconductor photocathode (p-Si/TiO2/NiOx) as an alternative for the rare and expensive Pt as a counter electrode for overall photoelectrochemical water splitting. The proposed photoelectrochemical (PEC) water-splitting device mimics the "Z"-scheme observed in natural photosynthesis by combining two photoelectrodes in a parallel-illumination mode. A nearly 60% increase in the photocurrent density (Jph) for pristine α-Fe2O3 and a 77% increase in the applied bias photocurrent efficiency (ABPE) were achieved by replacing the conventionally used Pt cathode with an efficient, cost effective p-Si/TiO2/NiOx photocathode under parallel illumination. The resulting photocurrent density of 1.26 mA cm-2 at 1.23VRHE represents a new record performance for hydrothermally grown pristine α-Fe2O3 nanorod photoanodes in combination with a photocathode, which opens the prospect for further improvement by doping α-Fe2O3 or by its decoration with co-catalysts. Electrochemical impedance spectroscopy measurements suggest that this significant performance increase is due to the enhancement of the space-charge field in α-Fe2O3.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...