Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 100(21): 12480-5, 2003 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-14523239

RESUMO

Protein kinase C (PKC) modulates the function of the capsaicin receptor transient receptor potential vanilloid 1 (TRPV1). This modulation manifests as increased current when the channel is activated by capsaicin. In addition, studies have suggested that phosphorylation by PKC might directly gate the channel, because PKC-activating phorbol esters induce TRPV1 currents in the absence of applied ligands. To test whether PKC both modulates and gates the TRPV1 function by direct phosphorylation, we used direct sequencing to determine the major sites of PKC phosphorylation on TRPV1 intracellular domains. We then tested the ability of the PKC-activating phorbol 12-myristate 13-acetate (PMA) to potentiate capsaicin-induced currents and to directly gate TRPV1. We found that mutation of S800 to alanine significantly reduced the PMA-induced enhancement of capsaicin-evoked currents and the direct activation of TRPV1 by PMA. Mutation of S502 to alanine reduced PMA enhancement of capsaicin-evoked currents, but had no effect on direct activation of TRPV1 by PMA. Conversely, mutation of T704 to alanine had no effect on PMA enhancement of capsaicin-evoked currents but dramatically reduced direct activation of TRPV1 by PMA. These results, combined with pharmacological studies showing that inactive phorbol esters also weakly activate TRPV1, suggest that PKC-mediated phosphorylation modulates TRPV1 but does not directly gate the channel. Rather, currents induced by phorbol esters result from the combination of a weak direct ligand-like activation of TRPV1 and the phosphorylation-induced enhancement of the TRPV1 function. Furthermore, modulation of the TRPV1 function by PKC appears to involve distinct phosphorylation sites depending on the mechanism of channel activation.


Assuntos
Proteína Quinase C/metabolismo , Receptores de Droga/metabolismo , Animais , Células COS , Ativação Enzimática/efeitos dos fármacos , Técnicas In Vitro , Ativação do Canal Iônico , Cinética , Fosforilação , Receptores de Droga/química , Receptores de Droga/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Acetato de Tetradecanoilforbol/farmacologia , Transfecção
2.
J Neurophysiol ; 90(3): 1671-9, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12750419

RESUMO

The transient outward potassium currents (also known as A-type currents or IA) are important determinants of neuronal excitability. In the brain, IA is modulated by protein kinase C (PKC), protein kinase A (PKA), and extracellular signal-related kinase (ERK), three kinases that have been shown to be critical modulators of nociception. We wanted to determine the effects of these kinases on IA in superficial dorsal horn neurons. Using whole cell recordings from cultured mouse spinal cord superficial dorsal horn neurons, we found that PKC and PKA both inhibit IA in these cells, and that PKC has a tonic inhibitory action on IA. Further, we provide evidence supporting the hypothesis that PKC and PKA do not modulate IA directly, but rather act as upstream activators of ERKs, which modulate IA. These results suggest that ERKs serve as signal integrators in modulation of IA in dorsal horn neurons and that modulation of A-type potassium currents may underlie aspects of central sensitization mediated by PKC, PKA, and ERKs.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Células do Corno Posterior/enzimologia , Canais de Potássio/fisiologia , Proteína Quinase C/metabolismo , Animais , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos ICR , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Células do Corno Posterior/efeitos dos fármacos , Canais de Potássio/classificação , Proteína Quinase C/antagonistas & inibidores
3.
J Biol Chem ; 278(32): 30294-301, 2003 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-12764131

RESUMO

The metabotropic glutamate receptors (mGluRs) have been predicted to have a classical seven transmembrane domain structure similar to that seen for members of the G-protein-coupled receptor (GPCR) superfamily. However, the mGluRs (and other members of the family C GPCRs) show no sequence homology to the rhodopsin-like GPCRs, for which this seven transmembrane domain structure has been experimentally confirmed. Furthermore, several transmembrane domain prediction algorithms suggest that the mGluRs have a topology that is distinct from these receptors. In the present study, we set out to test whether mGluR5 has seven true transmembrane domains. Using a variety of approaches in both prokaryotic and eukaryotic systems, our data provide strong support for the proposed seven transmembrane domain model of mGluR5. We propose that this membrane topology can be extended to all members of the family C GPCRs.


Assuntos
Receptores de Glutamato Metabotrópico/química , Algoritmos , Ampicilina/farmacologia , Animais , Células COS , Bovinos , Membrana Celular/metabolismo , Clonagem Molecular , Farmacorresistência Bacteriana , Epitopos , Escherichia coli/metabolismo , Deleção de Genes , Glicosilação , Microscopia de Fluorescência , Modelos Biológicos , Peptídeos/química , Estrutura Terciária de Proteína , Receptor de Glutamato Metabotrópico 5 , Receptores de Glutamato Metabotrópico/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Transfecção , beta-Lactamases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...