Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 370(6517)2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-33033155

RESUMO

The composition of asteroids and their connection to meteorites provide insight into geologic processes that occurred in the early Solar System. We present spectra of the Nightingale crater region on near-Earth asteroid Bennu with a distinct infrared absorption around 3.4 micrometers. Corresponding images of boulders show centimeters-thick, roughly meter-long bright veins. We interpret the veins as being composed of carbonates, similar to those found in aqueously altered carbonaceous chondrite meteorites. If the veins on Bennu are carbonates, fluid flow and hydrothermal deposition on Bennu's parent body would have occurred on kilometer scales for thousands to millions of years. This suggests large-scale, open-system hydrothermal alteration of carbonaceous asteroids in the early Solar System.

2.
Science ; 366(6470)2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31806784

RESUMO

Active asteroids are those that show evidence of ongoing mass loss. We report repeated instances of particle ejection from the surface of (101955) Bennu, demonstrating that it is an active asteroid. The ejection events were imaged by the OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer) spacecraft. For the three largest observed events, we estimated the ejected particle velocities and sizes, event times, source regions, and energies. We also determined the trajectories and photometric properties of several gravitationally bound particles that orbited temporarily in the Bennu environment. We consider multiple hypotheses for the mechanisms that lead to particle ejection for the largest events, including rotational disruption, electrostatic lofting, ice sublimation, phyllosilicate dehydration, meteoroid impacts, thermal stress fracturing, and secondary impacts.

3.
Talanta ; 204: 802-811, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31357367

RESUMO

Thermochemolysis of seven nucleobases-adenine, thymine, uracil, cytosine, guanine, xanthine, and hypoxanthine-in tetramethylammonium hydroxide (TMAH) was studied individually by pyrolysis gas chromatography mass spectrometry in the frame of the Mars surface exploration. The analyses were performed under conditions relevant to the Sample Analysis at Mars (SAM) instrument of the Mars Curiosity Rover and the Mars Organic Molecule Analyzer (MOMA) instrument of the ExoMars Rover. The thermochemolysis products of each nucleobase were identified and the reaction mechanisms studied. The thermochemolysis temperature was optimized and the limit of detection and quantification of each nucleobase were also investigated. Results indicate that 600°C is the optimal thermochemolysis temperature for all seven nucleobases. The methylated products trimethyl-adenine, 1, 3-dimethyl-thymine, 1, 3-dimethyl-uracil, trimethyl-cytosine, 1, 3, 7-trimethyl-xanthine (caffeine), and dimethyl-hypoxanthine, respectively, are the most stable forms of adenine, thymine, uracil, cytosine, guanine, and xanthine, and hypoxanthine in TMAH solutions. The limits of detection for adenine, thymine, and uracil were 0.075 nmol; the limits of detection for guanine, cytosine, and hypoxanthine were higher, at 0.40, 0.55, and 0.75 nmol, respectively. These experiments allowed to well constrain the analytical capabilities of the thermochemolysis experiments that will be performed on Mars to detect nucleobases.


Assuntos
Purinas/análise , Pirimidinonas/análise , Cromatografia Gasosa-Espectrometria de Massas , Temperatura Alta , Limite de Detecção , Marte , Purinas/química , Pirimidinonas/química , Pirólise , Voo Espacial/instrumentação
4.
Space Sci Rev ; 214(1)2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-30713357

RESUMO

OSIRIS-REx will return pristine samples of carbonaceous asteroid Bennu. This article describes how pristine was defined based on expectations of Bennu and on a realistic understanding of what is achievable with a constrained schedule and budget, and how that definition flowed to requirements and implementation. To return a pristine sample, the OSIRIS-REx spacecraft sampling hardware was maintained at level 100 A/2 and <180 ng/cm2 of amino acids and hydrazine on the sampler head through precision cleaning, control of materials, and vigilance. Contamination is further characterized via witness material exposed to the spacecraft assembly and testing environment as well as in space. This characterization provided knowledge of the expected background and will be used in conjunction with archived spacecraft components for comparison with the samples when they are delivered to Earth for analysis. Most of all, the cleanliness of the OSIRIS-REx spacecraft was achieved through communication among scientists, engineers, managers, and technicians.

5.
J Geophys Res Planets ; 120(3): 495-514, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26690960

RESUMO

The Sample Analysis at Mars (SAM) instrument on board the Mars Science Laboratory Curiosity rover is designed to conduct inorganic and organic chemical analyses of the atmosphere and the surface regolith and rocks to help evaluate the past and present habitability potential of Mars at Gale Crater. Central to this task is the development of an inventory of any organic molecules present to elucidate processes associated with their origin, diagenesis, concentration, and long-term preservation. This will guide the future search for biosignatures. Here we report the definitive identification of chlorobenzene (150-300 parts per billion by weight (ppbw)) and C2 to C4 dichloroalkanes (up to 70 ppbw) with the SAM gas chromatograph mass spectrometer (GCMS) and detection of chlorobenzene in the direct evolved gas analysis (EGA) mode, in multiple portions of the fines from the Cumberland drill hole in the Sheepbed mudstone at Yellowknife Bay. When combined with GCMS and EGA data from multiple scooped and drilled samples, blank runs, and supporting laboratory analog studies, the elevated levels of chlorobenzene and the dichloroalkanes cannot be solely explained by instrument background sources known to be present in SAM. We conclude that these chlorinated hydrocarbons are the reaction products of Martian chlorine and organic carbon derived from Martian sources (e.g., igneous, hydrothermal, atmospheric, or biological) or exogenous sources such as meteorites, comets, or interplanetary dust particles. KEY POINTS: First in situ evidence of nonterrestrial organics in Martian surface sediments Chlorinated hydrocarbons identified in the Sheepbed mudstone by SAM Organics preserved in sample exposed to ionizing radiation and oxidative condition.

6.
Science ; 347(6220): 412-4, 2015 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-25515119

RESUMO

The deuterium-to-hydrogen (D/H) ratio in strongly bound water or hydroxyl groups in ancient martian clays retains the imprint of the water of formation of these minerals. Curiosity's Sample Analysis at Mars (SAM) experiment measured thermally evolved water and hydrogen gas released between 550° and 950°C from samples of Hesperian-era Gale crater smectite to determine this isotope ratio. The D/H value is 3.0 (±0.2) times the ratio in standard mean ocean water. The D/H ratio in this ~3-billion-year-old mudstone, which is half that of the present martian atmosphere but substantially higher than that expected in very early Mars, indicates an extended history of hydrogen escape and desiccation of the planet.

7.
Science ; 343(6169): 1245267, 2014 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-24324276

RESUMO

H2O, CO2, SO2, O2, H2, H2S, HCl, chlorinated hydrocarbons, NO, and other trace gases were evolved during pyrolysis of two mudstone samples acquired by the Curiosity rover at Yellowknife Bay within Gale crater, Mars. H2O/OH-bearing phases included 2:1 phyllosilicate(s), bassanite, akaganeite, and amorphous materials. Thermal decomposition of carbonates and combustion of organic materials are candidate sources for the CO2. Concurrent evolution of O2 and chlorinated hydrocarbons suggests the presence of oxychlorine phase(s). Sulfides are likely sources for sulfur-bearing species. Higher abundances of chlorinated hydrocarbons in the mudstone compared with Rocknest windblown materials previously analyzed by Curiosity suggest that indigenous martian or meteoritic organic carbon sources may be preserved in the mudstone; however, the carbon source for the chlorinated hydrocarbons is not definitively of martian origin.


Assuntos
Exobiologia , Meio Ambiente Extraterreno/química , Hidrocarbonetos Clorados/análise , Marte , Compostos Orgânicos Voláteis/análise , Baías , Dióxido de Carbono/análise , Dióxido de Carbono/química , Sedimentos Geológicos/análise , Sedimentos Geológicos/química , Oxigênio/análise , Oxigênio/química , Sulfetos/análise , Sulfetos/química , Água/análise , Água/química
8.
Geobiology ; 12(1): 1-19, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24289240

RESUMO

Previous studies of the subsurface biosphere have deduced average cellular doubling times of hundreds to thousands of years based upon geochemical models. We have directly constrained the in situ average cellular protein turnover or doubling times for metabolically active micro-organisms based on cellular amino acid abundances, D/L values of cellular aspartic acid, and the in vivo aspartic acid racemization rate. Application of this method to planktonic microbial communities collected from deep fractures in South Africa yielded maximum cellular amino acid turnover times of ~89 years for 1 km depth and 27 °C and 1-2 years for 3 km depth and 54 °C. The latter turnover times are much shorter than previously estimated cellular turnover times based upon geochemical arguments. The aspartic acid racemization rate at higher temperatures yields cellular protein doubling times that are consistent with the survival times of hyperthermophilic strains and predicts that at temperatures of 85 °C, cells must replace proteins every couple of days to maintain enzymatic activity. Such a high maintenance requirement may be the principal limit on the abundance of living micro-organisms in the deep, hot subsurface biosphere, as well as a potential limit on their activity. The measurement of the D/L of aspartic acid in biological samples is a potentially powerful tool for deep, fractured continental and oceanic crustal settings where geochemical models of carbon turnover times are poorly constrained. Experimental observations on the racemization rates of aspartic acid in living thermophiles and hyperthermophiles could test this hypothesis. The development of corrections for cell wall peptides and spores will be required, however, to improve the accuracy of these estimates for environmental samples.


Assuntos
Ácido Aspártico/metabolismo , Bactérias/citologia , Divisão Celular , Sedimentos Geológicos/microbiologia , Viabilidade Microbiana , Microbiologia do Solo , Bactérias/metabolismo , DNA Bacteriano/química , DNA Bacteriano/genética , Dados de Sequência Molecular , Análise de Sequência de DNA , África do Sul , Temperatura , Fatores de Tempo
9.
Science ; 341(6153): 1238937, 2013 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-24072926

RESUMO

Samples from the Rocknest aeolian deposit were heated to ~835°C under helium flow and evolved gases analyzed by Curiosity's Sample Analysis at Mars instrument suite. H2O, SO2, CO2, and O2 were the major gases released. Water abundance (1.5 to 3 weight percent) and release temperature suggest that H2O is bound within an amorphous component of the sample. Decomposition of fine-grained Fe or Mg carbonate is the likely source of much of the evolved CO2. Evolved O2 is coincident with the release of Cl, suggesting that oxygen is produced from thermal decomposition of an oxychloride compound. Elevated δD values are consistent with recent atmospheric exchange. Carbon isotopes indicate multiple carbon sources in the fines. Several simple organic compounds were detected, but they are not definitively martian in origin.

10.
Science ; 341(6153): 1239505, 2013 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-24072928

RESUMO

The Rocknest aeolian deposit is similar to aeolian features analyzed by the Mars Exploration Rovers (MERs) Spirit and Opportunity. The fraction of sand <150 micrometers in size contains ~55% crystalline material consistent with a basaltic heritage and ~45% x-ray amorphous material. The amorphous component of Rocknest is iron-rich and silicon-poor and is the host of the volatiles (water, oxygen, sulfur dioxide, carbon dioxide, and chlorine) detected by the Sample Analysis at Mars instrument and of the fine-grained nanophase oxide component first described from basaltic soils analyzed by MERs. The similarity between soils and aeolian materials analyzed at Gusev Crater, Meridiani Planum, and Gale Crater implies locally sourced, globally similar basaltic materials or globally and regionally sourced basaltic components deposited locally at all three locations.

11.
Proc Natl Acad Sci U S A ; 98(5): 2138-41, 2001 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-11226205

RESUMO

Amino acid analyses using HPLC of pristine interior pieces of the CI carbonaceous chondrites Orgueil and Ivuna have found that beta-alanine, glycine, and gamma-amino-n-butyric acid (ABA) are the most abundant amino acids in these two meteorites, with concentrations ranging from approximately 600 to 2,000 parts per billion (ppb). Other alpha-amino acids such as alanine, alpha-ABA, alpha-aminoisobutyric acid (AIB), and isovaline are present only in trace amounts (<200 ppb). Carbon isotopic measurements of beta-alanine and glycine and the presence of racemic (D/L approximately 1) alanine and beta-ABA in Orgueil suggest that these amino acids are extraterrestrial in origin. In comparison to the CM carbonaceous chondrites Murchison and Murray, the amino acid composition of the CIs is strikingly distinct, suggesting that these meteorites came from a different type of parent body, possibly an extinct comet, than did the CM carbonaceous chondrites.

12.
Astrobiology ; 1(3): 259-69, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-12448989

RESUMO

The delivery of amino acids by micrometeorites to the early Earth during the period of heavy bombardment could have been a significant source of the Earth's prebiotic amino acid inventory provided that these organic compounds survived atmospheric entry heating. To investigate the sublimation of amino acids from a micrometeorite analog at elevated temperature, grains from the CM-type carbonaceous chondrite Murchison were heated to 550 degrees C inside a glass sublimation apparatus (SA) under reduced pressure. The sublimed residue that had collected on the cold finger of the SA after heating was analyzed for amino acids by HPLC. We found that when the temperature of the meteorite reached approximately 150 degrees C, a large fraction of the amino acid glycine had vaporized from the meteorite, recondensed onto the end of the SA cold finger, and survived as the rest of the grains heated to 550 degrees C. alpha-Aminoisobutryic acid and isovaline, which are two of the most abundant non-protein amino acids in Murchison, did not sublime from the meteorite and were completely destroyed during the heating experiment. Our experimental results suggest that sublimation of glycine present in micrometeorite grains may provide a way for this amino acid to survive atmospheric entry heating at temperatures > 550 degrees C; all other amino acids apparently are destroyed.


Assuntos
Aminoácidos , Temperatura Alta , Meteoroides , Aminoácidos/análise , Aminoácidos/química , Atmosfera , Pressão Atmosférica , Carbono , Fenômenos Químicos , Físico-Química , Cromatografia Líquida de Alta Pressão , Glicina/análise , Glicina/química , Lasers , Volatilização
13.
Anal Chem ; 71(18): 4000-6, 1999 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-10500487

RESUMO

Chiral separations of fluorescein isothiocyanate-labeled amino acids have been performed on a microfabricated capillary electrophoresis chip to explore the feasibility of using such devices to analyze for extinct or extant life signs in extraterrestrial environments. The test system consists of a folded electrophoresis channel (19.0 cm long x 150 microns wide x 20 microns deep) that was photolithographically fabricated in a 10-cm-diameter glass wafer sandwich, coupled to a laser-excited confocal fluorescence detection apparatus providing subattomole sensitivity. Using a sodium dodecyl sulfate/gamma-cyclodextrin pH 10.0 carbonate electrophoresis buffer and a separation voltage of 550 V/cm at 10 degrees C, baseline resolution was observed for Val, Ala, Glu, and Asp enantiomers and Gly in only 4 min. Enantiomeric ratios were determined for amino acids extracted from the Murchison meteorite, and these values closely matched values determined by HPLC. These results demonstrate the feasibility of using microfabricated lab-on-a-chip systems to analyze extraterrestrial samples for amino acids.


Assuntos
Aminoácidos/análise , Eletroforese Capilar/métodos , Meio Ambiente Extraterreno , Eletroforese Capilar/instrumentação , Fluoresceína-5-Isotiocianato , Corantes Fluorescentes , Estereoisomerismo
14.
Proc Natl Acad Sci U S A ; 96(16): 8835-8, 1999 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-10430856

RESUMO

A suite of protein and nonprotein amino acids were detected with high-performance liquid chromatography in the water- and acid-soluble components of an interior fragment of the Martian meteorite Nakhla, which fell in Egypt in 1911. Aspartic and glutamic acids, glycine, alanine, beta-alanine, and gamma-amino-n-butyric acid (gamma-ABA) were the most abundant amino acids detected and were found primarily in the 6 M HCl-hydrolyzed, hot water extract. The concentrations ranged from 20 to 330 parts per billion of bulk meteorite. The amino acid distribution in Nakhla, including the D/L ratios (values range from <0.1 to 0.5), is similar to what is found in bacterially degraded organic matter. The amino acids in Nakhla appear to be derived from terrestrial organic matter that infiltrated the meteorite soon after its fall to Earth, although it is possible that some of the amino acids are endogenous to the meteorite. The rapid amino acid contamination of Martian meteorites after direct exposure to the terrestrial environment has important implications for Mars sample-return missions and the curation of the samples from the time of their delivery to Earth.


Assuntos
Aminoácidos/análise , Marte , Meteoroides , Alanina/análise , Ácido Aspártico/metabolismo , Egito , Ácido Glutâmico/análise , Glicina/análise , beta-Alanina/análise , Ácido gama-Aminobutírico/análise
15.
Orig Life Evol Biosph ; 28(4-6): 413-24, 1998 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-9742723

RESUMO

Antarctic micrometeorites (AMMs) in the 100-400 microns size range are the dominant mass fraction of extraterrestrial material accreted by the Earth today. A high performance liquid chromatography (HPLC) based technique exploited at the limits of sensitivity has been used to search for the extraterrestrial amino acids alpha-aminoisobutyric acid (AIB) and isovaline in AMMs. Five samples, each containing about 30 to 35 grains, were analyzed. All the samples possess a terrestrial amino acid component, indicated by the excess of the L-enantiomers of common protein amino acids. In only one sample (A91) was AIB found to be present at a level significantly above the background blanks. The concentration of AIB (approximately 280 ppm), and the AIB/isovaline ratio (> or = 10), in this sample are both much higher than in CM chondrites. The apparently large variation in the AIB concentrations of the samples suggests that AIB may be concentrated in rare subset of micrometeorites. Because the AIB/isovaline ratio in sample A91 is much larger than in CM chondrites, the synthesis of amino acids in the micrometeorite parent bodies might have involved a different process requiring an HCN-rich environment, such as that found in comets. If the present day characteristics of the meteorite and micrometeorite fluxes can be extrapolated back in time, then the flux of large carbonaceous micrometeorites could have contributed to the inventory of prebiotic molecules on the early Earth.


Assuntos
Aminoácidos/análise , Meio Ambiente Extraterreno , Meteoroides , Ácidos Aminoisobutíricos/análise , Regiões Antárticas , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida de Alta Pressão/estatística & dados numéricos , Planeta Terra , Microquímica , Sensibilidade e Especificidade , Valina/análise
16.
Science ; 279(5349): 362-5, 1998 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-9430583

RESUMO

Trace amounts of glycine, serine, and alanine were detected in the carbonate component of the martian meteorite ALH84001 by high-performance liquid chromatography. The detected amino acids were not uniformly distributed in the carbonate component and ranged in concentration from 0.1 to 7 parts per million. Although the detected alanine consists primarily of the L enantiomer, low concentrations (<0.1 parts per million) of endogenous D-alanine may be present in the ALH84001 carbonates. The amino acids present in this sample of ALH84001 appear to be terrestrial in origin and similar to those in Allan Hills ice, although the possibility cannot be ruled out that minute amounts of some amino acids such as D-alanine are preserved in the meteorite.


Assuntos
Aminoácidos/análise , Marte , Meteoroides , Alanina/análise , Ácido Aspártico/análise , Cromatografia Líquida de Alta Pressão , Glicina/análise , Serina/análise , Estereoisomerismo
17.
Anal Chem ; 70(15): 3119-22, 1998 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-11013716

RESUMO

Amino acids have appreciable vapor pressures above 150 degrees C and will sublime under partial vacuum at elevated temperatures without any racemization or decomposition. The recoveries of several amino acids including aspartic acid, serine, glycine, alanine, alpha-aminoisobutyric acid, and valine were optimized by varying the temperature and duration of sublimation. Sublimation has been shown to be a rapid and effective technique for the isolation of amino acids from natural samples for enantiomeric analyses and a good substitute for conventional cation-exchange desalting techniques.


Assuntos
Aminoácidos/isolamento & purificação , Albuminas/química , Aminoácidos/química , Animais , Carbonatos/química , Técnicas de Química Analítica/instrumentação , Técnicas de Química Analítica/métodos , Fósseis , Sedimentos Geológicos/química , Moluscos/química , Pressão , Estereoisomerismo , Temperatura
18.
Geochim Cosmochim Acta ; 61(2): 475-81, 1997.
Artigo em Inglês | MEDLINE | ID: mdl-11541466

RESUMO

Recent analyses of the carbonate globules present in the Martian meteorite ALH84001 have detected polycyclic aromatic hydrocarbons (PAHs) at the ppm level (McKay et al., 1996). The distribution of PAHs observed in ALH84001 was interpreted as being inconsistent with a terrestrial origin and were claimed to be indigenous to the meteorite, perhaps derived from an ancient martian biota. We have examined PAHs in the Antarctic shergottite EETA79001, which is also considered to be from Mars, as well as several Antarctic carbonaceous chondrites. We have found that many of the same PAHs detected in the ALH84001 carbonate globules are present in Antarctic carbonaceous chondrites and in both the matrix and carbonate (druse) component of EETA79001. We also investigated PAHs in polar ice and found that carbonate is an effective scavenger of PAHs in ice meltwater. Moreover, the distribution of PAHs in the carbonate extract of Antarctic Allan Hills ice is remarkably similar to that found in both EETA79001 and ALH84001. The reported presence of L-amino acids of apparent terrestrial origin in the EETA79001 druse material (McDonald and Bada, 1995) suggests that this meteorite is contaminated with terrestrial organics probably derived from Antarctic ice meltwater that had percolated through the meteorite. Our data suggests that the PAHs observed in both ALH84001 and EETA79001 are derived from either the exogenous delivery of organics to Mars or extraterrestrial and terrestrial PAHs present in the ice meltwater or, more likely, from a mixture of these sources. It would appear that PAHs are not useful biomarkers in the search for extinct or extant life on Mars.


Assuntos
Meio Ambiente Extraterreno , Marte , Meteoroides , Hidrocarbonetos Policíclicos Aromáticos/análise , Regiões Antárticas , Biomarcadores , Carbonatos/química , Exobiologia , Gelo/análise , Espectrometria de Massas , Hidrocarbonetos Policíclicos Aromáticos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...