Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 66(13): 9147-9160, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37395055

RESUMO

The glycine to cysteine mutation at codon 12 of Kirsten rat sarcoma (KRAS) represents an Achilles heel that has now rendered this important GTPase druggable. Herein, we report our structure-based drug design approach that led to the identification of 14, AZD4747, a clinical development candidate for the treatment of KRASG12C-positive tumors, including the treatment of central nervous system (CNS) metastases. Building on our earlier discovery of C5-tethered quinazoline AZD4625, excision of a usually critical pyrimidine ring yielded a weak but brain-penetrant start point which was optimized for potency and DMPK. Key design principles and measured parameters that give high confidence in CNS exposure are discussed. During optimization, divergence between rodent and non-rodent species was observed in CNS exposure, with primate PET studies ultimately giving high confidence in the expected translation to patients. AZD4747 is a highly potent and selective inhibitor of KRASG12C with an anticipated low clearance and high oral bioavailability profile in humans.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Neoplasias , Animais , Humanos , Antineoplásicos/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Neoplasias/tratamento farmacológico , Desenho de Fármacos , Glicina/uso terapêutico , Mutação , Neoplasias Pulmonares/tratamento farmacológico
2.
J Med Chem ; 65(9): 6940-6952, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35471939

RESUMO

KRAS is an archetypal high-value intractable oncology drug target. The glycine to cysteine mutation at codon 12 represents an Achilles heel that has now rendered this important GTPase druggable. Herein, we report our structure-based drug design approach that led to the identification of 21, AZD4625, a clinical development candidate for the treatment of KRASG12C positive tumors. Highlights include a quinazoline tethering strategy to lock out a bio-relevant binding conformation and an optimization strategy focused on the reduction of extrahepatic clearance mechanisms seen in preclinical species. Crystallographic analysis was also key in helping to rationalize unusual structure-activity relationship in terms of ring size and enantio-preference. AZD4625 is a highly potent and selective inhibitor of KRASG12C with an anticipated low clearance and high oral bioavailability profile in humans.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Antineoplásicos/farmacologia , Desenho de Fármacos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Quinazolinas/farmacologia , Relação Estrutura-Atividade
3.
J Med Chem ; 63(9): 4468-4483, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32023060

RESUMO

Attempts to directly drug the important oncogene KRAS have met with limited success despite numerous efforts across industry and academia. The KRASG12C mutant represents an "Achilles heel" and has recently yielded to covalent targeting with small molecules that bind the mutant cysteine and create an allosteric pocket on GDP-bound RAS, locking it in an inactive state. A weak inhibitor at this site was optimized through conformational locking of a piperazine-quinazoline motif and linker modification. Subsequent introduction of a key methyl group to the piperazine resulted in enhancements in potency, permeability, clearance, and reactivity, leading to identification of a potent KRASG12C inhibitor with high selectivity and excellent cross-species pharmacokinetic parameters and in vivo efficacy.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Piperazinas/uso terapêutico , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Quinazolinas/uso terapêutico , Quinolonas/uso terapêutico , Regulação Alostérica , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacocinética , Células CACO-2 , Linhagem Celular Tumoral , Desenho de Fármacos , Humanos , Masculino , Camundongos Nus , Conformação Molecular , Mutação , Piperazinas/síntese química , Piperazinas/farmacocinética , Proteínas Proto-Oncogênicas p21(ras)/genética , Quinazolinas/síntese química , Quinazolinas/farmacocinética , Quinolonas/síntese química , Quinolonas/farmacocinética , Ratos Wistar , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Elife ; 62017 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-29210356

RESUMO

High fidelity replicative DNA polymerases are unable to synthesize past DNA adducts that result from diverse chemicals, reactive oxygen species or UV light. To bypass these replication blocks, cells utilize specialized translesion DNA polymerases that are intrinsically error prone and associated with mutagenesis, drug resistance, and cancer. How untimely access of translesion polymerases to DNA is prevented is poorly understood. Here we use co-localization single-molecule spectroscopy (CoSMoS) to follow the exchange of the E. coli replicative DNA polymerase Pol IIIcore with the translesion polymerases Pol II and Pol IV. We find that in contrast to the toolbelt model, the replicative and translesion polymerases do not form a stable complex on one clamp but alternate their binding. Furthermore, while the loading of clamp and Pol IIIcore is highly organized, the exchange with the translesion polymerases is stochastic and is not determined by lesion-recognition but instead a concentration-dependent competition between the polymerases.


Assuntos
DNA Polimerase III/metabolismo , DNA Polimerase II/metabolismo , DNA Polimerase beta/metabolismo , Replicação do DNA , DNA Bacteriano/biossíntese , Escherichia coli/enzimologia , Escherichia coli/genética , Imagem Individual de Molécula
5.
J Struct Biol ; 186(3): 367-75, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24680784

RESUMO

Dyneins are large protein complexes that act as microtubule based molecular motors. The dynein heavy chain contains a motor domain which is a member of the AAA+ protein family (ATPases Associated with diverse cellular Activities). Proteins of the AAA+ family show a diverse range of functionalities, but share a related core AAA+ domain, which often assembles into hexameric rings. Dynein is unusual because it has all six AAA+ domains linked together, in one long polypeptide. The dynein motor domain generates movement by coupling ATP driven conformational changes in the AAA+ ring to the swing of a motile element called the linker. Dynein binds to its microtubule track via a long antiparallel coiled-coil stalk that emanates from the AAA+ ring. Recently the first high resolution structures of the dynein motor domain were published. Here we provide a detailed structural analysis of the six AAA+ domains using our Saccharomycescerevisiae crystal structure. We describe how structural similarities in the dynein AAA+ domains suggest they share a common evolutionary origin. We analyse how the different AAA+ domains have diverged from each other. We discuss how this is related to the function of dynein as a motor protein and how the AAA+ domains of dynein compare to those of other AAA+ proteins.


Assuntos
Dineínas do Citoplasma/química , Proteínas de Saccharomyces cerevisiae/química , Sequência de Aminoácidos , Dineínas do Citoplasma/metabolismo , Evolução Molecular , Microtúbulos/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Estrutura Terciária de Proteína , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos
6.
Nat Struct Mol Biol ; 19(5): 492-7, S1, 2012 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-22426545

RESUMO

Dyneins power the beating of cilia and flagella, transport various intracellular cargos and are necessary for mitosis. All dyneins have a ∼300-kDa motor domain consisting of a ring of six AAA+ domains. ATP hydrolysis in the AAA+ ring drives the cyclic relocation of a motile element, the linker domain, to generate the force necessary for movement. How the linker interacts with the ring during the ATP hydrolysis cycle is not known. Here we present a 3.3-Šcrystal structure of the motor domain of Saccharomyces cerevisiae cytoplasmic dynein, crystallized in the absence of nucleotides. The linker is docked to a conserved site on AAA5, which is confirmed by mutagenesis as functionally necessary. Nucleotide soaking experiments show that the main ATP hydrolysis site in dynein (AAA1) is in a low-nucleotide affinity conformation and reveal the nucleotide interactions of the other three sites (AAA2, AAA3 and AAA4).


Assuntos
Dineínas/química , Proteínas Fúngicas/química , Saccharomyces cerevisiae/química , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Dineínas/metabolismo , Proteínas Fúngicas/metabolismo , Modelos Moleculares , Nucleotídeos/metabolismo , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...