Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Photochem Photobiol Sci ; 23(4): 747-755, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430371

RESUMO

Photochemistry of the (n-Bu4N)2[Pt(NO3)6] complex in acetonitrile was studied by means of stationary photolysis and nanosecond laser flash photolysis. The primary photochemical process was found to be an intramolecular electron transfer followed by an escape of an •NO3 radical to the solution bulk. The spectra of two successive Pt(III) intermediates were detected in the microsecond time domain, and their spectral and kinetic characteristics were determined. These intermediates were identified as PtIII(NO3)52- and PtIII(NO3)4- complexes. Disproportionation of Pt(III) species resulted in formation of final Pt(II) products.

2.
Photochem Photobiol Sci ; 23(4): 781-792, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38546955

RESUMO

Cerium ammonium nitrate (CAN) is an important photolytic source of NO3• radicals in aqueous nitric acid solutions and in acetonitrile. In this work we performed the study of primary photochemical processes for CAN in acetonitrile by means of ultrafast TA spectroscopy and quantum chemical calculations. Photoexcitation of CAN is followed by ultrafast (< 100 fs) intersystem crossing; the vibrationally cooled triplet state decays to pentacoordinated Ce(III) intermediate and NO3• radical with the characteristic time of ca. 40 ps. Quantum chemical (QM) calculations satisfactorily describe the UV-vis spectrum of the triplet state. An important feature of CAN photochemistry in CH3CN is the partial stabilization of the radical complex (RC) [(NH4)2CeIII(NO3)5…NO3•], which lifetime is ca. 2 µs. The possibility of the RC stabilization is supported by the QM calculations.

3.
Photochem Photobiol Sci ; 23(1): 153-162, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38066379

RESUMO

Photophysics and photochemistry of a potential light-activated cytotoxic dirhodium complex [Rh2(µ-O2CCH3)2(bpy)(dppz)](O2CCH3)2, where bpy = 2,2'-bipyridine, dppz = dipyrido[3,2-a:2',3'-c]phenazine (Complex 1 or Rh2) in aqueous solutions was studied by means of stationary photolysis and time-resolved methods in time range from hundreds of femtoseconds to microseconds. According to the literature, Complex 1 demonstrates both oxygen-dependent (due to singlet oxygen formation) and oxygen-independent cytotoxicity. Photoexchange of an acetate ligand to a water molecule was the only observed photochemical reaction, which rate was increased by oxygen removal from solutions. Photoexcitation of Complex 1 results in the formation of the lowest triplet electronic excited state, which lifetime is less than 10 ns. This time is too short for diffusion-controlled quenching of the triplet state by dissolved oxygen resulting in 1O2 formation. We proposed that singlet oxygen is produced by photoexcitation of weakly bound van der Waals complexes [Rh2…O2], which are formed in solutions. If this is true, no oxygen-independent light-induced cytotoxicity of Complex 1 exists. Residual cytotoxicity deaerated solutions are caused by the remaining [Rh2…O2] complexes.


Assuntos
Antineoplásicos , Oxigênio Singlete , Fotoquímica , Antineoplásicos/farmacologia , Antineoplásicos/química , Oxigênio
4.
Inorg Chem ; 62(48): 19677-19689, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37977192

RESUMO

We report the synthesis and comprehensive characterization of organic-inorganic hybrid salts formed by bis-cationic N,N'-bis(2-(trimethylammonium)ethylene)perylene-3,4,9,10-tetracarboxylic acid bisimide (PTCD2+) and Keggin-type [XW12O40]n- (X = Si, n = 4; X = P, n = 3) polyoxometalates. (PTCD)3[PW12O40]2·3DMSO·2H2O (2) and (PTCD)2[SiW12O40]·DMSO·2H2O (3) were structurally characterized by single crystal X-ray diffraction. The cations in both structures exhibited infinite chainlike arrangements through π-π interactions, contrasting with the previously reported cation-anion stacking observed in naphthalene diimide derivatives. A detailed theoretical study employing topological analysis of the electron density distribution within the quantum theory of atoms in molecules approach provided further insights into this structural dualism. Atomic force microscopy analyses revealed the formation of self-assembled supramolecular structures on graphite from molecular monolayers (3 nm of thick) to submicrometer aggregates for 2. Hyperspectral Raman spectroscopy imaging revealed that such heterostructures are likely formed by an enhanced π-π interactions. Both complexes demonstrated interesting electrochemical behavior, photoluminescence and X-ray-induced luminescence. Electron spin resonance analysis confirmed charge separation in both compounds, with enhanced efficiency observed in compound 2. Our findings of these perylene-based organic-inorganic hybrid salts offer the potential for their application in optoelectronic devices and functional materials.

5.
ACS Biomater Sci Eng ; 9(6): 3253-3261, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37146257

RESUMO

The conductive microbial nanowires of Geobacter sulfurreducens serve as a model for long-range extracellular electron transfer (EET), which is considered a revolutionary "green" nanomaterial in the fields of bioelectronics, renewable energy, and bioremediation. However, there is no efficient pathway to induce microorganisms to express a large amount of microbial nanowires. Here, several strategies have been used to successfully induce the expression of microbial nanowires. Microbial nanowire expression was closely related to the concentration of electron acceptors. The microbial nanowire was around 17.02 µm in length, more than 3 times compared to its own length. The graphite electrode was used as an alternative electron acceptor by G. sulfurreducens, which obtained a fast start-up time of 44 h in microbial fuel cells (MFCs). Meanwhile, Fe(III) citrate-coated sugarcane carbon and biochar were prepared to test the applicability of these strategies in the actual microbial community. The unsatisfied EET efficiency between c-type cytochrome and extracellular insoluble electron receptors promoted the expression of microbial nanowires. Hence, microbial nanowires were proposed to be an effective survival strategy for G. sulfurreducens to cope with various environmental stresses. Based on this top-down strategy of artificially constructed microbial environmental stress, this study is of great significance for exploring more efficient methods to induce microbial nanowires expression.


Assuntos
Fontes de Energia Bioelétrica , Nanofios , Compostos Férricos/metabolismo , Transporte de Elétrons , Condutividade Elétrica
6.
Phys Chem Chem Phys ; 25(20): 14179-14192, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37165694

RESUMO

A study of luminescence and photochromic properties of (E)-2,3-bis(2,5-dimethylthiophen-3-yl)-5-(4-(pyrrolidin-1-yl)benzylidene)cyclopent-2-en-1-one, which is a diarylethene with a push-pull system between carbonyl and dimethylamino groups, was performed using time-resolved methods. The intramolecular charge transfer (ICT) process as well as 6π-electrocyclization and E-/Z-isomerization contribute to the complex light-induced properties of this molecule. Formation of unexpected short-lived intermediates was detected in the time range from 100 fs to 100 µs. A model based on two processes (additional photocyclization and interconversion between conformers) was proposed to rationalize this result. The key intermediates existing in the picosecond time domain are so-called precursors, which are proposed for both parallel (p) and anti-parallel (ap) isomers of the open form. In general, fast light-induced processes for the fluorescent diarylcyclopentenones are much more complicated than for the parent cyclopentenone-based DAE.

7.
J Phys Chem A ; 127(21): 4704-4714, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37198918

RESUMO

The photochemistry of sodium thiosulfate (S2O32-) in aqueous solutions is rather complicated. Several sulfur-containing radical anions are formed upon photoexcitation. Any of them are rather common (SO3•-, SO2•-, and SO5•-); others are rare (S2O3•-, •S4O63-, and S•-) or never documented (S2O5•-). In order to support the identification of intermediate radical anions, quantum-chemical (QM─quantum mechanical) calculations of the geometric and electronic structures of S2O3•-, S2O5•-, and •S4O63- were performed. Two different approaches, time-dependent density functional theory and complete active space self-consistent field, were applied to identify the method optimal for the reproduction of the experimental electronic absorption spectra. Several of the most commonly used functionals were considered. The best agreement with the experimentally observed spectra of reference compounds (common sulfur-containing anions and radical anions) was achieved for the WB97X-D3 functional. Using this approach, satisfactory agreement between experimental and calculated spectra of S2O3•-, S2O5•-, and •S4O63- was achieved. It was shown that S2O5•- and •S4O63- can exist in two isomeric forms with different spectral properties. These isomers are S2O3O2•-; SO3SO2•- for the case of S2O5•- and (S2O3)2•3-; (S3O32-...SO3•-) for the case of •S4O63-.

8.
Int J Mol Sci ; 24(8)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37108728

RESUMO

We demonstrate that a series of perfluorinated para-oligophenylenes C6F5-(C6F4)n-C6F5 (n = 1-3) produce exciplexes with N,N-dimethylaniline (DMA) in degassed X-irradiated n-dodecane solutions. The optical characterization of the compounds shows that their short fluorescence lifetimes (ca. 1.2 ns) and UV-Vis absorption spectra, overlapping with the spectrum of DMA with molar absorption coefficients of 2.7-4.6 × 104 M-1cm-1, preclude the standard photochemical exciplex formation pathway via selective optical generation of the local excited state of the donor and its bulk quenching by the acceptor. However, under X-rays, the efficient assembly of such exciplexes proceeds via the recombination of radical ion pairs, which delivers the two partners close to each other and ensures a sufficient energy deposition. The exciplex emission is completely quenched by the equilibration of the solution with air, providing a lower bound of exciplex emission lifetime of ca. 200 ns. The recombination nature of the exciplexes is confirmed by the magnetic field sensitivity of the exciplex emission band inherited from the magnetic field sensitivity from the recombination of spin-correlated radical ion pairs. Exciplex formation in such systems is further supported by DFT calculations. These first exciplexes from fully fluorinated compounds show the largest known red shift of the exciplex emission from the local emission band, suggesting the potential of perfluoro compounds for optimizing optical emitters.


Assuntos
Alcanos , Compostos de Anilina , Raios X , Compostos de Anilina/química , Alcanos/química , Recombinação Genética
9.
Photochem Photobiol Sci ; 19(11): 1569-1579, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33073834

RESUMO

The photochemistry of the OsIVCl62- complex in ethanol was studied by means of stationary photolysis, nanosecond laser flash photolysis, ultrafast pump-probe spectroscopy and quantum chemistry. The direction of the photochemical process was found to be wavelength-dependent. Irradiation in the region of the d-d and LMCT bands results in the photosolvation (with the wavelength-dependent quantum yield) and photoreduction of Os(iv) to Os(iii), correspondingly. The characteristic time of photosolvation is ca. 40 ps. Photoreduction occurs in the micro- and millisecond time domains via several Os(iii) intermediates. The nature of intermediates and the possible mechanisms of photoreduction are discussed. We believe that the lability of the photochemically produced Os(iv) and Os(iii) intermediates determines the synthetic potential of OsIVCl62- photochemistry.

10.
Photochem Photobiol Sci ; 19(9): 1222-1229, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32748912

RESUMO

It is known that trans,cis,cis-[RuCl2(DMSO)2(H2O)2] (1a) complexes, which are formed upon dissolution of trans-[RuCl2(DMSO)4] in water, demonstrate light-induced cytotoxicity. The mechanistic study of 1a photochemistry has been performed using ultrafast pump-probe spectroscopy, laser flash photolysis and stationary photolysis. The first stage of 1a photochemistry is the photoexchange of a DMSO ligand to a water molecule; its quantum yield is wavelength-dependent (estimating by values 0.3 and 0.04 upon irradiation at 308 and 430 nm, respectively). The mechanism of photoexchange is complicated involving at least four Ru(ii) intermediates. Two tentative mechanisms of the process are proposed.

11.
Phys Chem Chem Phys ; 22(9): 5220-5228, 2020 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-32091057

RESUMO

A mechanistic study of the photochromic properties and photodegradation processes of an asymmetrical diarylcyclopentenone bearing thiophene and benzothiophene units using stationary photolysis, nanosecond laser flash photolysis and time-resolved luminescence was performed. It was found that the light-induced reversible isomerization of (3-(2,5-dimethyltiophen-3-il)-2-(2-methyl-1-benzylthiophen-3-il)cyclopent-2-en-1-one, compound 1) from open to closed form is a common photochromic transformation inherent to diarylethenes, while the photodegradation process proceeds in two ways. The first is a formal 1,2-dyotropic rearrangement, proceeding without the participation of oxygen. The second is the oxygen-dependent mechanism involving the excitation of the open form 1A into the triplet state, quenching of the latter by dissolved oxygen, and oxidation of the initial compound by singlet oxygen.

12.
Metallomics ; 11(12): 1999-2009, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31555793

RESUMO

In this work we have demonstrated that the ruthenium nitrosyl complex [RuNO(ß-Pic)2(NO2)2OH] is suitable for investigation of the inactivation of DNA repair enzymes in vitro. Photoinduced inhibition of DNA glycosylases such as E. coli Endo III, plant NtROS1, mammalian mNEIL1 and hNEIL2 occurs to an extent of ≥90% after irradiation with the ruthenium complex. The photophysical and photochemical processes of [RuNO(ß-Pic)2(NO2)2OH] were investigated using stationary and time-resolved spectroscopy, and mass spectrometry. A possible mechanism of the photo-processes was proposed from the combined spectroscopic study and DTF calculations, which reveal that the photolysis is multistage. The primary and secondary photolysis stages are the photo-induced cleavage of the Ru-NO bond with the formation of a free nitric oxide and RuIII complex followed by ligand exchange with solvent. For E. coli Endo III, covalent interaction with the photolysis product was confirmed by UV-vis and mass spectrometric methods.


Assuntos
DNA Glicosilases/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Óxido Nítrico/química , Rutênio/química , DNA Glicosilases/química , Enzimas Reparadoras do DNA/química , Desoxirribonuclease (Dímero de Pirimidina)/química , Desoxirribonuclease (Dímero de Pirimidina)/metabolismo , Ativação Enzimática/efeitos da radiação , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Espectrometria de Massas/métodos , Processos Fotoquímicos/efeitos da radiação , Fotólise/efeitos da radiação , Espectrofotometria/métodos
13.
Photochem Photobiol Sci ; 18(5): 1122-1129, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30758006

RESUMO

Quantum chemical calculations (CASSCF and XMCQDPT level of theory, IMCP-SR1 and SBKJC basis sets) of the structures and electronic absorption spectra of the OsIVCl5(H2O)- and OsIVCl5(OH)2- complexes, which are the products of OsIVCl62- photoaquation, were performed. The satisfactory agreement between the experimental and calculated spectra was achieved using both triplet and quintet manifolds. The dissociation of the aquacomplex with the formation of the hydroxocomplex was explained by the thermochemical data.

14.
Photochem Photobiol Sci ; 17(9): 1222-1228, 2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-30070288

RESUMO

It is known that both cis,fac-[RuCl2(DMSO)3(H2O)] (1a) and trans,cis,cis-[RuCl2(DMSO)2(H2O)2] (2a) complexes, which are formed on the dissolution of trans and cis-isomers of [RuCl2(DMSO)4] in water, demonstrate light-induced anticancer activity. The first stage of 1a photochemistry is its transformation to 2a occurring with a rather high quantum yield, 0.64 ± 0.17. The mechanism of the 1a → 2a phototransformation was studied by means of nanosecond laser flash photolysis and ultrafast pump-probe spectroscopy. The reaction occurs in the picosecond time range via the formation and decay of two successive intermediates interpreted as Ru(ii) complexes with different sets of ligands. A tentative mechanism of phototransformation is proposed.

15.
J Phys Chem A ; 122(36): 7107-7117, 2018 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-30126277

RESUMO

Photoinduced rearrangement of diarylethenes to naphthalenes or isoelectronic benzoannulated heterocycles is a novel reaction in preparative organic photochemistry. Recently it was shown that unsymmetrical diarylethenes containing benzene and oxazole derivatives efficiently undergo this transformation leading to amide derivatives of naphthalene. Mechanistic study of skeletal rearrangement for a typical representative of these compounds, namely 3-(5-methyl-2-phenyl-1,3-oxazol-4-yl)-2-phenylcyclopent-2-en-1-one, was performed by stationary and laser flash photolysis as well as density functional theory (DFT) calculations. The mechanism of the rearrangement was found to comprise several thermal stages. Both singlet and triplet states of the initial compound can be transformed to the reaction product, which results in the dependence of the quantum yield vs concentration of dissolved oxygen. Three reactive intermediates were registered in the laser flash photolysis experiment; the predicted structures were in accordance with DFT calculations of the electronic absorption spectra. In addition to the previously proposed mechanism of skeletal rearrangement based on a sigmatropic shift of hydrogen, two new parallel pathways based on formation of a carbanion/carbocation were determined.

16.
Photochem Photobiol Sci ; 17(1): 18-26, 2018 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-29143059

RESUMO

Two mechanisms of OsIVCl62- photolysis were studied by means of quantum chemical calculations in gas and aqueous phases. The difference between these mechanisms is in the nature of the possible Os(iv) key intermediates (KI). According to calculations, the intermediate is an OsIVCl5- complex of square pyramidal coordination geometry. The calculations do not give an opportunity to make an unambiguous choice between the triplet and quintet multiplicities of OsIVCl5-. The calculated CASSCF/IMCP-SR1 transition energies for 5OsIVCl5- are lower than for 3OsIVCl5-, while the calculated XMC-QDPT2/SBKJC spectra for the triplet state are in better agreement with the experimental absorption spectrum of the KI than for the quintet state.

17.
Dalton Trans ; 46(29): 9440-9450, 2017 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-28696474

RESUMO

Diazide diamino complexes of Pt(iv) are considered as prospective prodrugs in oxygen-free photodynamic therapy (PDT). Primary photophysical and photochemical processes for cis,trans,cis-[Pt(N3)2(OH)2(NH3)2] and trans,trans,trans-[Pt(N3)2(OH)2(NH3)2] complexes were studied by means of stationary photolysis, nanosecond laser flash photolysis and ultrafast kinetic spectroscopy. The process of photolysis is multistage. The first stage is the photosubstitution of an azide ligand to a water molecule. This process was shown to be a chain reaction involving redox stages. Pt(iv) and Pt(iii) intermediates responsible for the chain propagation were recorded using ultrafast kinetic spectroscopy and nanosecond laser flash photolysis. The mechanism of photosubstitution is proposed.


Assuntos
Azidas/química , Neoplasias/tratamento farmacológico , Compostos Organoplatínicos/química , Fotoquimioterapia , Fotólise , Cinética , Compostos Organoplatínicos/uso terapêutico
18.
Photochem Photobiol Sci ; 16(2): 220-227, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28009886

RESUMO

The photoaquation of the OsIVCl62- complex was studied by means of stationary photolysis, nanosecond laser flash photolysis and ultrafast kinetic spectroscopy. The OsIVCl5(OH)2- complex was found to be the only reaction product. The quantum yield of photoaquation is rather low and wavelength-dependent. No impact of redox processes on photoaquation was revealed. The total characteristic lifetime of the process is about 80 ps. Three intermediates were recorded in the femto- and picosecond time domains and assigned to different Os(iv) species. The nature of intermediates and possible mechanisms of photoaquation are discussed.


Assuntos
Complexos de Coordenação/química , Osmio/química , Água/química , Cinética , Lasers , Oxirredução , Fotólise/efeitos da radiação , Espectrofotometria Ultravioleta
19.
Photochem Photobiol Sci ; 12(11): 1939-47, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23928915

RESUMO

Laser flash photolysis was applied to determine the primary photochemical processes over iron-containing clay (montmorillonite KSF), pillared interlayered clays (PILCs) and mesoporous mesophase iron silicate materials (MMMs). For KSF, the homogeneous photochemical reaction of Fe(III) leached from the clay material resulted in the formation of OH radicals, which were monitored by means of their reaction with methyl viologen dication (MV(2+)). For PILCs and MMMs, no leaching of Fe(III) to the solution nor hydroxyl radical formation were observed. Nevertheless, these catalysts were found to exhibit a sufficient effect on phenol photoionization. The increase in quantum yields of PhO radicals is caused by the effect of PILCs and MMMs and is explained by heterogeneous processes on the surface of catalyst particles.


Assuntos
Silicatos de Alumínio/química , Alumínio/química , Ferro/química , Lasers , Fotólise , Dióxido de Silício/química , Catálise/efeitos da radiação , Argila , Porosidade , Propriedades de Superfície
20.
Photochem Photobiol Sci ; 12(10): 1803-10, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23835791

RESUMO

The fluorescent properties of a recently synthesized photochromic naphthopyran containing a 1-aza-15-crown-5 moiety (1b) and its crownless analogue (1a) were studied. 1b emits fluorescence with a maximum at 528 nm, quantum yield 0.1 and characteristic lifetime 2.4 ns (in acetonitrile at room temperature). Its luminescence could be switched off photochemically in two ways using two parallel photochemical reactions characteristic for this type of naphthopyran. The first way is the irreversible trans­cis photoisomerization of a closed form ("stilbene-like reaction"). The second way is the thermally reversible reaction of closed form transition to the open form ("chromene-like reaction"). The fluorescence of 1b is quenched by alkali earth metal cations by the mechanism of static quenching. Stability constants for 1 : 1 complexes of 1b with Mg(2+) and Ba(2+) determined from Stern-Volmer plots are in agreement with that obtained by UV spectroscopy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...