Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 7660, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35538111

RESUMO

We present a particle-in-cell (PIC) analysis of terahertz (THz) radiation by ultrafast plasma currents driven by relativistic-intensity laser pulses. We show that, while the I0 [Formula: see text] product of the laser intensity I0 and the laser wavelength λ0 plays the key role in the energy scaling of strong-field laser-plasma THz generation, the THz output energy, WTHz, does not follow the I0 [Formula: see text] scaling. Its behavior as a function of I0 and λ0 is instead much more complex. Our two- and three-dimensional PIC analysis shows that, for moderate, subrelativistic and weakly relativistic fields, WTHz(I0 [Formula: see text]) can be approximated as (I0λ02)α, with a suitable exponent α, as a clear signature of vacuum electron acceleration as a predominant physical mechanism whereby the energy of the laser driver is transferred to THz radiation. For strongly relativistic laser fields, on the other hand, WTHz(I0 [Formula: see text]) closely follows the scaling dictated by the relativistic electron laser ponderomotive potential [Formula: see text], converging to WTHz ∝ [Formula: see text] for very high I0, thus indicating the decisive role of relativistic ponderomotive charge acceleration as a mechanism behind laser-to-THz energy conversion. Analysis of the electron distribution function shows that the temperature Te of hot laser-driven electrons bouncing back and forth between the plasma boundaries displays the same behavior as a function of I0 and λ0, altering its scaling from (I0λ02)α to that of [Formula: see text], converging to WTHz ∝ [Formula: see text] for very high I0. These findings provide a clear physical picture of THz generation in relativistic and subrelativistic laser plasmas, suggesting the THz yield WTHz resolved as a function of I0 and λ0 as a meaningful measurable that can serve as a probe for the temperature Te of hot electrons in a vast class of laser-plasma interactions. Specifically, the α exponent of the best (I0λ02)α fit of the THz yield suggests a meaningful probe that can help identify the dominant physical mechanisms whereby the energy of the laser field is converted to the energy of plasma electrons.


Assuntos
Lasers , Radiação Terahertz , Aceleração , Elétrons , Luz
2.
Opt Lett ; 45(3): 750-753, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32004301

RESUMO

Coherent-wake plasma emission induced by ultrashort mid-infrared laser pulses on a solid target is shown to give rise to high-brightness, high-order harmonic radiation, offering a promising source of attosecond pulses and a probe for ultrafast subrelativistic plasma dynamics. With 80-fs, 0.2-TW pulses of 3.9-µm radiation used as a driver, optical harmonics up to the 34th order are detected, with their spectra stretching from the mid-infrared region to the extreme ultraviolet region. The harmonic spectrum is found to be highly sensitive to the chirp of the driver. Particle-in-cell analysis of this effect suggests, in agreement with the generic scenario of coherent-wake emission, that optical harmonics are radiated as trains of extremely short, attosecond ultraviolet pulses with a pulse-to-pulse interval varying over the pulse train. A positive chirp of the driver pulse can partially compensate for this variation in the interpulse separation, allowing harmonics of the highest orders to be generated in the plasma emission spectrum.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA